Abstract:This paper introduces the task of Remote Sensing Copy-Move Question Answering (RSCMQA). Unlike traditional Remote Sensing Visual Question Answering (RSVQA), RSCMQA focuses on interpreting complex tampering scenarios and inferring relationships between objects. Based on the practical needs of national defense security and land resource monitoring, we have developed an accurate and comprehensive global dataset for remote sensing image copy-move question answering, named RS-CMQA-2.1M. These images were collected from 29 different regions across 14 countries. Additionally, we have refined a balanced dataset, RS-CMQA-B, to address the long-standing issue of long-tail data in the remote sensing field. Furthermore, we propose a region-discriminative guided multimodal CMQA model, which enhances the accuracy of answering questions about tampered images by leveraging prompt about the differences and connections between the source and tampered domains. Extensive experiments demonstrate that our method provides a stronger benchmark for RS-CMQA compared to general VQA and RSVQA models. Our dataset and code are available at https://github.com/shenyedepisa/RSCMQA.
Abstract:Shape memory structures are playing an important role in many cutting-edge intelligent fields. However, the existing technologies can only realize 4D printing of a single polymer or metal, which limits practical applications. Here, we report a construction strategy for TSMP/M heterointerface, which uses Pd2+-containing shape memory polymer (AP-SMR) to induce electroless plating reaction and relies on molecular dynamics, which has both shape memory properties and metal activity and information processing power. Through multi-material DLP 3D printing technology, the interface can be 3D selectively programmed on functional substrate parts of arbitrary shapes to become 4D electronic smart devices (Robotics). Microscopically, this type of interface appears as a composite structure with a nanometer-micrometer interface height, which is composed of a pure substrate layer (smart materials), an intermediate layer (a composite structure in which metal particles are embedded in a polymer cross-linked network) and a pure metal layer. The structure programmed by TSMP/M heterointerface exhibits both SMA characteristics and metal properties, thus having more intelligent functions (electroactive, electrothermal deformation, electronically controlled denaturation) and higher performance (selectivity of shape memory structures can be realized control, remote control, inline control and low voltage control). This is expected to provide a more flexible manufacturing process as platform technology for designing, manufacturing and applying smart devices with new concepts, and promote the development of cutting-edge industries such as smart robots and smart electronics.
Abstract:As a typical entity of MEC (Mobile Edge Computing), 5G CPE (Customer Premise Equipment)/HGU (Home Gateway Unit) has proven to be a promising alternative to traditional Smart Home Gateway. Network TC (Traffic Classification) is a vital service quality assurance and security management method for communication networks, which has become a crucial functional entity in 5G CPE/HGU. In recent years, many researchers have applied Machine Learning or Deep Learning (DL) to TC, namely AI-TC, to improve its performance. However, AI-TC faces challenges, including data dependency, resource-intensive traffic labeling, and user privacy concerns. The limited computing resources of 5G CPE further complicate efficient classification. Moreover, the "black box" nature of AI-TC models raises transparency and credibility issues. The paper proposes the FedEdge AI-TC framework, leveraging Federated Learning (FL) for reliable Network TC in 5G CPE. FL ensures privacy by employing local training, model parameter iteration, and centralized training. A semi-supervised TC algorithm based on Variational Auto-Encoder (VAE) and convolutional neural network (CNN) reduces data dependency while maintaining accuracy. To optimize model light-weight deployment, the paper introduces XAI-Pruning, an AI model compression method combined with DL model interpretability. Experimental evaluation demonstrates FedEdge AI-TC's superiority over benchmarks in terms of accuracy and efficient TC performance. The framework enhances user privacy and model credibility, offering a comprehensive solution for dependable and transparent Network TC in 5G CPE, thus enhancing service quality and security.
Abstract:Adversarial attack serves as a major challenge for neural network models in NLP, which precludes the model's deployment in safety-critical applications. A recent line of work, detection-based defense, aims to distinguish adversarial sentences from benign ones. However, {the core limitation of previous detection methods is being incapable of giving correct predictions on adversarial sentences unlike defense methods from other paradigms.} To solve this issue, this paper proposes TextShield: (1) we discover a link between text attack and saliency information, and then we propose a saliency-based detector, which can effectively detect whether an input sentence is adversarial or not. (2) We design a saliency-based corrector, which converts the detected adversary sentences to benign ones. By combining the saliency-based detector and corrector, TextShield extends the detection-only paradigm to a detection-correction paradigm, thus filling the gap in the existing detection-based defense. Comprehensive experiments show that (a) TextShield consistently achieves higher or comparable performance than state-of-the-art defense methods across various attacks on different benchmarks. (b) our saliency-based detector outperforms existing detectors for detecting adversarial sentences.
Abstract:Existing face relighting methods often struggle with two problems: maintaining the local facial details of the subject and accurately removing and synthesizing shadows in the relit image, especially hard shadows. We propose a novel deep face relighting method that addresses both problems. Our method learns to predict the ratio (quotient) image between a source image and the target image with the desired lighting, allowing us to relight the image while maintaining the local facial details. During training, our model also learns to accurately modify shadows by using estimated shadow masks to emphasize on the high-contrast shadow borders. Furthermore, we introduce a method to use the shadow mask to estimate the ambient light intensity in an image, and are thus able to leverage multiple datasets during training with different global lighting intensities. With quantitative and qualitative evaluations on the Multi-PIE and FFHQ datasets, we demonstrate that our proposed method faithfully maintains the local facial details of the subject and can accurately handle hard shadows while achieving state-of-the-art face relighting performance.