Abstract:As the digital and physical worlds become more intertwined, there has been a lot of interest in digital avatars that closely resemble their real-world counterparts. Current digitization methods used in 3D production pipelines require costly capture setups, making them impractical for mass usage among common consumers. Recent academic literature has found success in reconstructing humans from limited data using implicit representations (e.g., voxels used in NeRFs), which are able to produce impressive videos. However, these methods are incompatible with traditional rendering pipelines, making it difficult to use them in applications such as games. In this work, we propose an end-to-end pipeline that builds explicitly-represented photorealistic 3D avatars using standard 3D assets. Our key idea is the use of dynamically-generated textures to enhance the realism and visually mask deficiencies in the underlying mesh geometry. This allows for seamless integration with current graphics pipelines while achieving comparable visual quality to state-of-the-art 3D avatar generation methods.
Abstract:Vision Transformer models exhibit immense power yet remain opaque to human understanding, posing challenges and risks for practical applications. While prior research has attempted to demystify these models through input attribution and neuron role analysis, there's been a notable gap in considering layer-level information and the holistic path of information flow across layers. In this paper, we investigate the significance of influential neuron paths within vision Transformers, which is a path of neurons from the model input to output that impacts the model inference most significantly. We first propose a joint influence measure to assess the contribution of a set of neurons to the model outcome. And we further provide a layer-progressive neuron locating approach that efficiently selects the most influential neuron at each layer trying to discover the crucial neuron path from input to output within the target model. Our experiments demonstrate the superiority of our method finding the most influential neuron path along which the information flows, over the existing baseline solutions. Additionally, the neuron paths have illustrated that vision Transformers exhibit some specific inner working mechanism for processing the visual information within the same image category. We further analyze the key effects of these neurons on the image classification task, showcasing that the found neuron paths have already preserved the model capability on downstream tasks, which may also shed some lights on real-world applications like model pruning. The project website including implementation code is available at https://foundation-model-research.github.io/NeuronPath/.
Abstract:Large Language Models (LLMs) have demonstrated strong generalizable reasoning and planning capabilities. However, their efficacies in spatial path planning and obstacle-free trajectory generation remain underexplored. Leveraging LLMs for navigation holds significant potential, given LLMs' ability to handle unseen scenarios, support user-agent interactions, and provide global control across complex systems, making them well-suited for agentic planning and humanoid motion generation. As one of the first studies in this domain, we explore the zero-shot navigation and path generation capabilities of LLMs by constructing a dataset and proposing an evaluation protocol. Specifically, we represent paths using anchor points connected by straight lines, enabling movement in various directions. This approach offers greater flexibility and practicality compared to previous methods while remaining simple and intuitive for LLMs. We demonstrate that, when tasks are well-structured in this manner, modern LLMs exhibit substantial planning proficiency in avoiding obstacles while autonomously refining navigation with the generated motion to reach the target. Further, this spatial reasoning ability of a single LLM motion agent interacting in a static environment can be seamlessly generalized in multi-motion agents coordination in dynamic environments. Unlike traditional approaches that rely on single-step planning or local policies, our training-free LLM-based method enables global, dynamic, closed-loop planning, and autonomously resolving collision issues.
Abstract:Automating bone micro-milling using a robotic system presents challenges due to the uncertainties in both the external and internal features of bone tissue. For example, during a mouse cranial window creation, a circular path with a radius of 2 to 4 mm needs to be milled on the mouse skull using a microdrill. The uneven surface and non-uniform thickness of the mouse skull make it difficult to fully automate this process, requiring the system to possess advanced perceptual and adaptive capabilities. In this study, we propose an automatic calibration and 3D surface fitting method and integrate it into an autonomous robotic bone micro-milling system, enabling it to quickly, in real-time, and accurately perceive and adapt to the uneven surface and non-uniform thickness of the target without human assistance. Validation experiments on euthanized mice demonstrate that the improved system achieves a success rate of 85.7 % and an average milling time of 2.1 minutes, showing not only significant performance improvements over the previous system but also exceptional accuracy, speed, and stability compared to human operators.
Abstract:Ensuring safe and comfortable bite transfer during robot-assisted feeding is challenging due to the close physical human-robot interaction required. This paper presents a novel approach to modeling physical human-robot interaction in a physics-based simulator (MuJoCo) using soft-body dynamics. We integrate a flexible head model with a rigid skeleton while accounting for internal dynamics, enabling the flexible model to be actuated by the skeleton. Incorporating realistic soft-skin contact dynamics in simulation allows for systematically evaluating bite transfer parameters, such as insertion depth and entry angle, and their impact on user safety and comfort. Our findings suggest that a straight-in-straight-out strategy minimizes forces and enhances user comfort in robot-assisted feeding, assuming a static head. This simulation-based approach offers a safer and more controlled alternative to real-world experimentation. Supplementary videos can be found at: https://tinyurl.com/224yh2kx.
Abstract:Post-hoc explanation methods for black-box models often struggle with faithfulness and human interpretability due to the lack of explainability in current neural models. Meanwhile, B-cos networks have been introduced to improve model explainability through architectural and computational adaptations, but their application has so far been limited to computer vision models and their associated training pipelines. In this work, we introduce B-cos LMs, i.e., B-cos networks empowered for NLP tasks. Our approach directly transforms pre-trained language models into B-cos LMs by combining B-cos conversion and task fine-tuning, improving efficiency compared to previous B-cos methods. Our automatic and human evaluation results demonstrate that B-cos LMs produce more faithful and human interpretable explanations than post hoc methods, while maintaining task performance comparable to conventional fine-tuning. Our in-depth analysis explores how B-cos LMs differ from conventionally fine-tuned models in their learning processes and explanation patterns. Finally, we provide practical guidelines for effectively building B-cos LMs based on our findings. Our code is available at https://anonymous.4open.science/r/bcos_lm.
Abstract:Visual instruction tuning refines pre-trained Multimodal Large Language Models (MLLMs) to enhance their real-world task performance. However, the rapid expansion of visual instruction datasets introduces significant data redundancy, leading to excessive computational costs. Existing data selection methods predominantly rely on proxy models or loss-based metrics, both of which impose substantial computational overheads due to the necessity of model inference and backpropagation. To address this challenge, we propose PRISM, a novel training-free approach for efficient multimodal data selection. Unlike existing methods, PRISM eliminates the reliance on proxy models, warm-up pretraining, and gradient-based optimization. Instead, it leverages Pearson correlation analysis to quantify the intrinsic visual encoding properties of MLLMs, computing a task-specific correlation score to identify high-value instances. This not only enbles data-efficient selection,but maintains the original performance. Empirical evaluations across multiple MLLMs demonstrate that PRISM reduces the overall time required for visual instruction tuning and data selection to just 30% of conventional methods, while surpassing fully fine-tuned models across eight multimodal and three language understanding benchmarks, achieving a 101.7% relative improvement in final performance.
Abstract:With the recent surge in interest surrounding generative paradigms, generative recommendation has increasingly attracted the attention of researchers in the recommendation community. This paradigm generally consists of two stages. In the first stage, pretrained semantic embeddings or collaborative ID embeddings are quantized to create item codes, aiming to capture and preserve rich semantic or collaborative knowledge within these codes. The second stage involves utilizing these discrete codes to perform an autoregressive sequence generation task. Existing methods often either overlook collaborative or semantic knowledge, or combine the two roughly. In this paper, we observe that naively concatenating representations from semantic and collaborative modality leads to a semantic domination issue, where the resulting representation is overly influenced by semantic information, effectively overshadowing the collaborative representation. Consequently, downstream recommendation tasks fail to fully exploit the knowledge from both modalities, resulting in suboptimal performance. To address this, we propose a progressive collaborative and semantic knowledge fusion model for generative recommendation, named PRORec, which integrates semantic and collaborative knowledge with a unified code through a two-stage framework. Specifically, in the first stage, we propose a cross-modality knowledge alignment task, which integrates semantic knowledge into collaborative embeddings, enhancing their representational capability. In the second stage, we propose an in-modality knowledge distillation task, designed to effectively capture and integrate knowledge from both semantic and collaborative modalities. Extensive experiments on three widely used benchmarks validate the effectiveness of our approach, demonstrating its superiority compared to existing methods.
Abstract:In medical time series disease diagnosis, two key challenges are identified.First, the high annotation cost of medical data leads to overfitting in models trained on label-limited, single-center datasets. To address this, we propose incorporating external data from related tasks and leveraging AE-GAN to extract prior knowledge,providing valuable references for downstream tasks. Second, many existing studies employ contrastive learning to derive more generalized medical sequence representations for diagnostic tasks, usually relying on manually designed diverse positive and negative sample pairs.However, these approaches are complex, lack generalizability, and fail to adaptively capture disease-specific features across different conditions.To overcome this, we introduce LMCF (Learnable Multi-views Contrastive Framework), a framework that integrates a multi-head attention mechanism and adaptively learns representations from different views through inter-view and intra-view contrastive learning strategies.Additionally, the pre-trained AE-GAN is used to reconstruct discrepancies in the target data as disease probabilities, which are then integrated into the contrastive learning process.Experiments on three target datasets demonstrate that our method consistently outperforms seven other baselines, highlighting its significant impact on healthcare applications such as the diagnosis of myocardial infarction, Alzheimer's disease, and Parkinson's disease.
Abstract:The essence of audio-visual segmentation (AVS) lies in locating and delineating sound-emitting objects within a video stream. While Transformer-based methods have shown promise, their handling of long-range dependencies struggles due to quadratic computational costs, presenting a bottleneck in complex scenarios. To overcome this limitation and facilitate complex multi-modal comprehension with linear complexity, we introduce AVS-Mamba, a selective state space model to address the AVS task. Our framework incorporates two key components for video understanding and cross-modal learning: Temporal Mamba Block for sequential video processing and Vision-to-Audio Fusion Block for advanced audio-vision integration. Building on this, we develop the Multi-scale Temporal Encoder, aimed at enhancing the learning of visual features across scales, facilitating the perception of intra- and inter-frame information. To perform multi-modal fusion, we propose the Modality Aggregation Decoder, leveraging the Vision-to-Audio Fusion Block to integrate visual features into audio features across both frame and temporal levels. Further, we adopt the Contextual Integration Pyramid to perform audio-to-vision spatial-temporal context collaboration. Through these innovative contributions, our approach achieves new state-of-the-art results on the AVSBench-object and AVSBench-semantic datasets. Our source code and model weights are available at AVS-Mamba.