Abstract:Despite remarkable advancements in video depth estimation, existing methods exhibit inherent limitations in achieving geometric fidelity through the affine-invariant predictions, limiting their applicability in reconstruction and other metrically grounded downstream tasks. We propose GeometryCrafter, a novel framework that recovers high-fidelity point map sequences with temporal coherence from open-world videos, enabling accurate 3D/4D reconstruction, camera parameter estimation, and other depth-based applications. At the core of our approach lies a point map Variational Autoencoder (VAE) that learns a latent space agnostic to video latent distributions for effective point map encoding and decoding. Leveraging the VAE, we train a video diffusion model to model the distribution of point map sequences conditioned on the input videos. Extensive evaluations on diverse datasets demonstrate that GeometryCrafter achieves state-of-the-art 3D accuracy, temporal consistency, and generalization capability.
Abstract:A fundamental challenge in Visual Autoregressive models is the substantial memory overhead required during inference to store previously generated representations. Despite various attempts to mitigate this issue through compression techniques, prior works have not explicitly formalized the problem of KV-cache compression in this context. In this work, we take the first step in formally defining the KV-cache compression problem for Visual Autoregressive transformers. We then establish a fundamental negative result, proving that any mechanism for sequential visual token generation under attention-based architectures must use at least $\Omega(n^2 d)$ memory, when $d = \Omega(\log n)$, where $n$ is the number of tokens generated and $d$ is the embedding dimensionality. This result demonstrates that achieving truly sub-quadratic memory usage is impossible without additional structural constraints. Our proof is constructed via a reduction from a computational lower bound problem, leveraging randomized embedding techniques inspired by dimensionality reduction principles. Finally, we discuss how sparsity priors on visual representations can influence memory efficiency, presenting both impossibility results and potential directions for mitigating memory overhead.
Abstract:Spread through air spaces (STAS) represents a newly identified aggressive pattern in lung cancer, which is known to be associated with adverse prognostic factors and complex pathological features. Pathologists currently rely on time consuming manual assessments, which are highly subjective and prone to variation. This highlights the urgent need for automated and precise diag nostic solutions. 2,970 lung cancer tissue slides are comprised from multiple centers, re-diagnosed them, and constructed and publicly released three lung cancer STAS datasets: STAS CSU (hospital), STAS TCGA, and STAS CPTAC. All STAS datasets provide corresponding pathological feature diagnoses and related clinical data. To address the bias, sparse and heterogeneous nature of STAS, we propose an scale-aware multiple instance learning(SMILE) method for STAS diagnosis of lung cancer. By introducing a scale-adaptive attention mechanism, the SMILE can adaptively adjust high attention instances, reducing over-reliance on local regions and promoting consistent detection of STAS lesions. Extensive experiments show that SMILE achieved competitive diagnostic results on STAS CSU, diagnosing 251 and 319 STAS samples in CPTAC andTCGA,respectively, surpassing clinical average AUC. The 11 open baseline results are the first to be established for STAS research, laying the foundation for the future expansion, interpretability, and clinical integration of computational pathology technologies. The datasets and code are available at https://anonymous.4open.science/r/IJCAI25-1DA1.
Abstract:Element-level visual manipulation is essential in digital content creation, but current diffusion-based methods lack the precision and flexibility of traditional tools. In this work, we introduce BlobCtrl, a framework that unifies element-level generation and editing using a probabilistic blob-based representation. By employing blobs as visual primitives, our approach effectively decouples and represents spatial location, semantic content, and identity information, enabling precise element-level manipulation. Our key contributions include: 1) a dual-branch diffusion architecture with hierarchical feature fusion for seamless foreground-background integration; 2) a self-supervised training paradigm with tailored data augmentation and score functions; and 3) controllable dropout strategies to balance fidelity and diversity. To support further research, we introduce BlobData for large-scale training and BlobBench for systematic evaluation. Experiments show that BlobCtrl excels in various element-level manipulation tasks while maintaining computational efficiency, offering a practical solution for precise and flexible visual content creation. Project page: https://liyaowei-stu.github.io/project/BlobCtrl/
Abstract:The key-value (KV) cache in autoregressive transformers presents a significant bottleneck during inference, which restricts the context length capabilities of large language models (LLMs). While previous work analyzes the fundamental space complexity barriers in standard attention mechanism [Haris and Onak, 2025], our work generalizes the space complexity barriers result to tensor attention version. Our theoretical contributions rely on a novel reduction from communication complexity and deduce the memory lower bound for tensor-structured attention mechanisms when $d = \Omega(\log n)$. In the low dimensional regime where $d = o(\log n)$, we analyze the theoretical bounds of the space complexity as well. Overall, our work provides a theoretical foundation for us to understand the compression-expressivity tradeoff in tensor attention mechanisms and offers more perspectives in developing more memory-efficient transformer architectures.
Abstract:Flow matching has emerged as a powerful framework for generative modeling, offering computational advantages over diffusion models by leveraging deterministic Ordinary Differential Equations (ODEs) instead of stochastic dynamics. While prior work established the worst case optimality of standard flow matching under Wasserstein distances, the theoretical guarantees for higher-order flow matching - which incorporates acceleration terms to refine sample trajectories - remain unexplored. In this paper, we bridge this gap by proving that higher-order flow matching preserves worst case optimality as a distribution estimator. We derive upper bounds on the estimation error for second-order flow matching, demonstrating that the convergence rates depend polynomially on the smoothness of the target distribution (quantified via Besov spaces) and key parameters of the ODE dynamics. Our analysis employs neural network approximations with carefully controlled depth, width, and sparsity to bound acceleration errors across both small and large time intervals, ultimately unifying these results into a general worst case optimal bound for all time steps.
Abstract:Evaluating text-to-vision content hinges on two crucial aspects: visual quality and alignment. While significant progress has been made in developing objective models to assess these dimensions, the performance of such models heavily relies on the scale and quality of human annotations. According to Scaling Law, increasing the number of human-labeled instances follows a predictable pattern that enhances the performance of evaluation models. Therefore, we introduce a comprehensive dataset designed to Evaluate Visual quality and Alignment Level for text-to-vision content (Q-EVAL-100K), featuring the largest collection of human-labeled Mean Opinion Scores (MOS) for the mentioned two aspects. The Q-EVAL-100K dataset encompasses both text-to-image and text-to-video models, with 960K human annotations specifically focused on visual quality and alignment for 100K instances (60K images and 40K videos). Leveraging this dataset with context prompt, we propose Q-Eval-Score, a unified model capable of evaluating both visual quality and alignment with special improvements for handling long-text prompt alignment. Experimental results indicate that the proposed Q-Eval-Score achieves superior performance on both visual quality and alignment, with strong generalization capabilities across other benchmarks. These findings highlight the significant value of the Q-EVAL-100K dataset. Data and codes will be available at https://github.com/zzc-1998/Q-Eval.
Abstract:Recently, Large Language Models (LLMs) have achieved remarkable success. A key factor behind this success is the scaling law observed by OpenAI. Specifically, for models with Transformer architecture, the test loss exhibits a power-law relationship with model size, dataset size, and the amount of computation used in training, demonstrating trends that span more than seven orders of magnitude. This scaling law challenges traditional machine learning wisdom, notably the Oscar Scissors principle, which suggests that an overparametrized algorithm will overfit the training datasets, resulting in poor test performance. Recent research has also identified the scaling law in simpler machine learning contexts, such as linear regression. However, fully explaining the scaling law in large practical models remains an elusive goal. In this work, we advance our understanding by demonstrating that the scaling law phenomenon extends to multiple regression and kernel regression settings, which are significantly more expressive and powerful than linear methods. Our analysis provides deeper insights into the scaling law, potentially enhancing our understanding of LLMs.
Abstract:The expressive power and computational complexity of deep visual generative models, such as flow-based and autoregressive (AR) models, have gained considerable interest for their wide-ranging applications in generative tasks. However, the theoretical characterization of their expressiveness through the lens of circuit complexity remains underexplored, particularly for the state-of-the-art architecture like FlowAR proposed by [Ren et al., 2024], which integrates flow-based and autoregressive mechanisms. This gap limits our understanding of their inherent computational limits and practical efficiency. In this study, we address this gap by analyzing the circuit complexity of the FlowAR architecture. We demonstrate that when the largest feature map produced by the FlowAR model has dimensions $n \times n \times c$, the FlowAR model is simulable by a family of threshold circuits $\mathsf{TC}^0$, which have constant depth $O(1)$ and polynomial width $\mathrm{poly}(n)$. This is the first study to rigorously highlight the limitations in the expressive power of FlowAR models. Furthermore, we identify the conditions under which the FlowAR model computations can achieve almost quadratic time. To validate our theoretical findings, we present efficient model variant constructions based on low-rank approximations that align with the derived criteria. Our work provides a foundation for future comparisons with other generative paradigms and guides the development of more efficient and expressive implementations.
Abstract:This paper introduces Force Matching (ForM), a novel framework for generative modeling that represents an initial exploration into leveraging special relativistic mechanics to enhance the stability of the sampling process. By incorporating the Lorentz factor, ForM imposes a velocity constraint, ensuring that sample velocities remain bounded within a constant limit. This constraint serves as a fundamental mechanism for stabilizing the generative dynamics, leading to a more robust and controlled sampling process. We provide a rigorous theoretical analysis demonstrating that the velocity constraint is preserved throughout the sampling procedure within the ForM framework. To validate the effectiveness of our approach, we conduct extensive empirical evaluations. On the \textit{half-moons} dataset, ForM significantly outperforms baseline methods, achieving the lowest Euclidean distance loss of \textbf{0.714}, in contrast to vanilla first-order flow matching (5.853) and first- and second-order flow matching (5.793). Additionally, we perform an ablation study to further investigate the impact of our velocity constraint, reaffirming the superiority of ForM in stabilizing the generative process. The theoretical guarantees and empirical results underscore the potential of integrating special relativity principles into generative modeling. Our findings suggest that ForM provides a promising pathway toward achieving stable, efficient, and flexible generative processes. This work lays the foundation for future advancements in high-dimensional generative modeling, opening new avenues for the application of physical principles in machine learning.