Abstract:In this paper, we analyze the computational limitations of Mamba and State-space Models (SSMs) by using the circuit complexity framework. Despite Mamba's stateful design and recent attention as a strong candidate to outperform Transformers, we have demonstrated that both Mamba and SSMs with $\mathrm{poly}(n)$-precision and constant-depth layers reside within the $\mathsf{DLOGTIME}$-uniform $\mathsf{TC}^0$ complexity class. This result indicates Mamba has the same computational capabilities as Transformer theoretically, and it cannot solve problems like arithmetic formula problems, boolean formula value problems, and permutation composition problems if $\mathsf{TC}^0 \neq \mathsf{NC}^1$. Therefore, it challenges the assumption Mamba is more computationally expressive than Transformers. Our contributions include rigorous proofs showing that Selective SSM and Mamba architectures can be simulated by $\mathsf{DLOGTIME}$-uniform $\mathsf{TC}^0$ circuits, and they cannot solve problems outside $\mathsf{TC}^0$.
Abstract:Modern Hopfield networks (MHNs) have emerged as powerful tools in deep learning, capable of replacing components such as pooling layers, LSTMs, and attention mechanisms. Recent advancements have enhanced their storage capacity, retrieval speed, and error rates. However, the fundamental limits of their computational expressiveness remain unexplored. Understanding the expressive power of MHNs is crucial for optimizing their integration into deep learning architectures. In this work, we establish rigorous theoretical bounds on the computational capabilities of MHNs using circuit complexity theory. Our key contribution is that we show that MHNs are $\mathsf{DLOGTIME}$-uniform $\mathsf{TC}^0$. Hence, unless $\mathsf{TC}^0 = \mathsf{NC}^1$, a $\mathrm{poly}(n)$-precision modern Hopfield networks with a constant number of layers and $O(n)$ hidden dimension cannot solve $\mathsf{NC}^1$-hard problems such as the undirected graph connectivity problem and the tree isomorphism problem. We also extended our results to Kernelized Hopfield Networks. These results demonstrate the limitation in the expressive power of the modern Hopfield networks. Moreover, Our theoretical analysis provides insights to guide the development of new Hopfield-based architectures.
Abstract:Recent advancements in generative models have significantly improved novel view synthesis (NVS) from multi-view data. However, existing methods depend on external multi-view alignment processes, such as explicit pose estimation or pre-reconstruction, which limits their flexibility and accessibility, especially when alignment is unstable due to insufficient overlap or occlusions between views. In this paper, we propose NVComposer, a novel approach that eliminates the need for explicit external alignment. NVComposer enables the generative model to implicitly infer spatial and geometric relationships between multiple conditional views by introducing two key components: 1) an image-pose dual-stream diffusion model that simultaneously generates target novel views and condition camera poses, and 2) a geometry-aware feature alignment module that distills geometric priors from dense stereo models during training. Extensive experiments demonstrate that NVComposer achieves state-of-the-art performance in generative multi-view NVS tasks, removing the reliance on external alignment and thus improving model accessibility. Our approach shows substantial improvements in synthesis quality as the number of unposed input views increases, highlighting its potential for more flexible and accessible generative NVS systems.
Abstract:Characterizing the express power of the Transformer architecture is critical to understanding its capacity limits and scaling law. Recent works provide the circuit complexity bounds to Transformer-like architecture. On the other hand, Rotary Position Embedding ($\mathsf{RoPE}$) has emerged as a crucial technique in modern large language models, offering superior performance in capturing positional information compared to traditional position embeddings, which shows great potential in application prospects, particularly for the long context scenario. Empirical evidence also suggests that $\mathsf{RoPE}$-based Transformer architectures demonstrate greater generalization capabilities compared to conventional Transformer models. In this work, we establish a tighter circuit complexity bound for Transformers with $\mathsf{RoPE}$ attention. Our key contribution is that we show that unless $\mathsf{TC}^0 = \mathsf{NC}^1$, a $\mathsf{RoPE}$-based Transformer with $\mathrm{poly}(n)$-precision, $O(1)$ layers, hidden dimension $d \leq O(n)$ cannot solve the arithmetic problem or the Boolean formula value problem. This result significantly demonstrates the fundamental limitation of the expressivity of the $\mathsf{RoPE}$-based Transformer architecture, although it achieves giant empirical success. Our theoretical framework not only establishes tighter complexity bounds but also may instruct further work on the $\mathsf{RoPE}$-based Transformer.
Abstract:In-context learning has been recognized as a key factor in the success of Large Language Models (LLMs). It refers to the model's ability to learn patterns on the fly from provided in-context examples in the prompt during inference. Previous studies have demonstrated that the Transformer architecture used in LLMs can implement a single-step gradient descent update by processing in-context examples in a single forward pass. Recent work has further shown that, during in-context learning, a looped Transformer can implement multi-step gradient descent updates in forward passes. However, their theoretical results require an exponential number of in-context examples, $n = \exp(\Omega(T))$, where $T$ is the number of loops or passes, to achieve a reasonably low error. In this paper, we study linear looped Transformers in-context learning on linear vector generation tasks. We show that linear looped Transformers can implement multi-step gradient descent efficiently for in-context learning. Our results demonstrate that as long as the input data has a constant condition number, e.g., $n = O(d)$, the linear looped Transformers can achieve a small error by multi-step gradient descent during in-context learning. Furthermore, our preliminary experiments validate our theoretical analysis. Our findings reveal that the Transformer architecture possesses a stronger in-context learning capability than previously understood, offering new insights into the mechanisms behind LLMs and potentially guiding the better design of efficient inference algorithms for LLMs.
Abstract:Recent empirical studies have identified fixed point iteration phenomena in deep neural networks, where the hidden state tends to stabilize after several layers, showing minimal change in subsequent layers. This observation has spurred the development of practical methodologies, such as accelerating inference by bypassing certain layers once the hidden state stabilizes, selectively fine-tuning layers to modify the iteration process, and implementing loops of specific layers to maintain fixed point iterations. Despite these advancements, the understanding of fixed point iterations remains superficial, particularly in high-dimensional spaces, due to the inadequacy of current analytical tools. In this study, we conduct a detailed analysis of fixed point iterations in a vector-valued function modeled by neural networks. We establish a sufficient condition for the existence of multiple fixed points of looped neural networks based on varying input regions. Additionally, we expand our examination to include a robust version of fixed point iterations. To demonstrate the effectiveness and insights provided by our approach, we provide case studies that looped neural networks may exist $2^d$ number of robust fixed points under exponentiation or polynomial activation functions, where $d$ is the feature dimension. Furthermore, our preliminary empirical results support our theoretical findings. Our methodology enriches the toolkit available for analyzing fixed point iterations of deep neural networks and may enhance our comprehension of neural network mechanisms.
Abstract:Large Language Models (LLMs) have demonstrated remarkable capabilities in processing long-context information. However, the quadratic complexity of attention computation with respect to sequence length poses significant computational challenges, and I/O aware algorithms have been proposed. This paper presents a comprehensive analysis of the I/O complexity for attention mechanisms, focusing on backward passes by categorizing into small and large cache scenarios. Using the red-blue pebble game framework, we establish tight bounds on I/O complexity across all cache sizes. We confirm that the de facto standard I/O aware algorithm FlashAttention is optimal for both forward and backward passes for the large cache size scenario. For small cache sizes, we provide an algorithm that improves over existing methods and achieves the tight bounds. Additionally, we extend our analysis to sparse attention, a mainstream speeding-up approach, deriving fine-grained lower bounds for both forward and backward passes and both small and large caches. Our findings complete the theoretical foundation for I/O complexity in attention mechanisms, offering insights for designing efficient algorithms of LLM training and inference.
Abstract:Telepresence technology aims to provide an immersive virtual presence for remote conference applications, and it is extremely important to synthesize high-quality binaural audio signals for this aim. Because the ambient noise is often inevitable in practical application scenarios, it is highly desired that binaural audio signals without noise can be obtained from microphone-array signals directly. For this purpose, this paper proposes a new end-to-end noise-immune binaural audio synthesis framework from microphone-array signals, abbreviated as Array2BR, and experimental results show that binaural cues can be correctly mapped and noise can be well suppressed simultaneously using the proposed framework. Compared with existing methods, the proposed method achieved better performance in terms of both objective and subjective metric scores.
Abstract:Understanding noise tolerance of learning algorithms under certain conditions is a central quest in learning theory. In this work, we study the problem of computationally efficient PAC learning of halfspaces in the presence of malicious noise, where an adversary can corrupt both instances and labels of training samples. The best-known noise tolerance either depends on a target error rate under distributional assumptions or on a margin parameter under large-margin conditions. In this work, we show that when both types of conditions are satisfied, it is possible to achieve {\em constant} noise tolerance by minimizing a reweighted hinge loss. Our key ingredients include: 1) an efficient algorithm that finds weights to control the gradient deterioration from corrupted samples, and 2) a new analysis on the robustness of the hinge loss equipped with such weights.
Abstract:3D Multi-Object Tracking (MOT) obtains significant performance improvements with the rapid advancements in 3D object detection, particularly in cost-effective multi-camera setups. However, the prevalent end-to-end training approach for multi-camera trackers results in detector-specific models, limiting their versatility. Moreover, current generic trackers overlook the unique features of multi-camera detectors, i.e., the unreliability of motion observations and the feasibility of visual information. To address these challenges, we propose RockTrack, a 3D MOT method for multi-camera detectors. Following the Tracking-By-Detection framework, RockTrack is compatible with various off-the-shelf detectors. RockTrack incorporates a confidence-guided preprocessing module to extract reliable motion and image observations from distinct representation spaces from a single detector. These observations are then fused in an association module that leverages geometric and appearance cues to minimize mismatches. The resulting matches are propagated through a staged estimation process, forming the basis for heuristic noise modeling. Additionally, we introduce a novel appearance similarity metric for explicitly characterizing object affinities in multi-camera settings. RockTrack achieves state-of-the-art performance on the nuScenes vision-only tracking leaderboard with 59.1% AMOTA while demonstrating impressive computational efficiency.