Abstract:Graph Neural Networks (GNNs) have become the standard approach for learning and reasoning over relational data, leveraging the message-passing mechanism that iteratively propagates node embeddings through graph structures. While GNNs have achieved significant empirical success, their theoretical limitations remain an active area of research. Existing studies primarily focus on characterizing GNN expressiveness through Weisfeiler-Lehman (WL) graph isomorphism tests. In this paper, we take a fundamentally different approach by exploring the computational limitations of GNNs through the lens of circuit complexity. Specifically, we analyze the circuit complexity of common GNN architectures and prove that under constraints of constant-depth layers, linear or sublinear embedding sizes, and polynomial precision, GNNs cannot solve key problems such as graph connectivity and graph isomorphism unless $\mathsf{TC}^0 = \mathsf{NC}^1$. These results reveal the intrinsic expressivity limitations of GNNs behind their empirical success and introduce a novel framework for analyzing GNN expressiveness that can be extended to a broader range of GNN models and graph decision problems.
Abstract:Understanding the expressive ability of a specific model is essential for grasping its capacity limitations. Recently, several studies have established circuit complexity bounds for Transformer architecture. Besides, the Visual AutoRegressive (VAR) model has risen to be a prominent method in the field of image generation, outperforming previous techniques, such as Diffusion Transformers, in generating high-quality images. We investigate the circuit complexity of the VAR model and establish a bound in this study. Our primary result demonstrates that the VAR model is equivalent to a simulation by a uniform $\mathsf{TC}^0$ threshold circuit with hidden dimension $d \leq O(n)$ and $\mathrm{poly}(n)$ precision. This is the first study to rigorously highlight the limitations in the expressive power of VAR models despite their impressive performance. We believe our findings will offer valuable insights into the inherent constraints of these models and guide the development of more efficient and expressive architectures in the future.
Abstract:Recently, Visual Autoregressive ($\mathsf{VAR}$) Models introduced a groundbreaking advancement in the field of image generation, offering a scalable approach through a coarse-to-fine "next-scale prediction" paradigm. However, the state-of-the-art algorithm of $\mathsf{VAR}$ models in [Tian, Jiang, Yuan, Peng and Wang, NeurIPS 2024] takes $O(n^4)$ time, which is computationally inefficient. In this work, we analyze the computational limits and efficiency criteria of $\mathsf{VAR}$ Models through a fine-grained complexity lens. Our key contribution is identifying the conditions under which $\mathsf{VAR}$ computations can achieve sub-quadratic time complexity. Specifically, we establish a critical threshold for the norm of input matrices used in $\mathsf{VAR}$ attention mechanisms. Above this threshold, assuming the Strong Exponential Time Hypothesis ($\mathsf{SETH}$) from fine-grained complexity theory, a sub-quartic time algorithm for $\mathsf{VAR}$ models is impossible. To substantiate our theoretical findings, we present efficient constructions leveraging low-rank approximations that align with the derived criteria. This work initiates the study of the computational efficiency of the $\mathsf{VAR}$ model from a theoretical perspective. Our technique will shed light on advancing scalable and efficient image generation in $\mathsf{VAR}$ frameworks.
Abstract:Sora-like video generation models have achieved remarkable progress with a Multi-Modal Diffusion Transformer MM-DiT architecture. However, the current video generation models predominantly focus on single-prompt, struggling to generate coherent scenes with multiple sequential prompts that better reflect real-world dynamic scenarios. While some pioneering works have explored multi-prompt video generation, they face significant challenges including strict training data requirements, weak prompt following, and unnatural transitions. To address these problems, we propose DiTCtrl, a training-free multi-prompt video generation method under MM-DiT architectures for the first time. Our key idea is to take the multi-prompt video generation task as temporal video editing with smooth transitions. To achieve this goal, we first analyze MM-DiT's attention mechanism, finding that the 3D full attention behaves similarly to that of the cross/self-attention blocks in the UNet-like diffusion models, enabling mask-guided precise semantic control across different prompts with attention sharing for multi-prompt video generation. Based on our careful design, the video generated by DiTCtrl achieves smooth transitions and consistent object motion given multiple sequential prompts without additional training. Besides, we also present MPVBench, a new benchmark specially designed for multi-prompt video generation to evaluate the performance of multi-prompt generation. Extensive experiments demonstrate that our method achieves state-of-the-art performance without additional training.
Abstract:The Rotary Position Embedding (RoPE) mechanism has become a powerful enhancement to the Transformer architecture, which enables models to capture token relationships when encoding positional information. However, the RoPE mechanisms make the computations of attention mechanisms more complicated, which makes efficient algorithms challenging. Earlier research introduced almost linear time, i.e., $n^{1+o(1)}$ where $n$ is the number of input tokens, algorithms for the forward computation under specific parameter settings. However, achieving a subquadratic time algorithm for other parameter regimes remains impossible unless the widely accepted Strong Exponential Time Hypothesis (SETH) is disproven. In this work, we develop the first almost linear time algorithm for backward computations in the RoPE-based attention under bounded entries. Our approach builds on recent advancements in fast RoPE attention computations, utilizing a novel combination of the polynomial method and the Fast Fourier Transform. Furthermore, we show that with lower bounds derived from the SETH, the bounded entry condition is necessary for subquadratic performance.
Abstract:Tensor Attention extends traditional attention mechanisms by capturing high-order correlations across multiple modalities, addressing the limitations of classical matrix-based attention. Meanwhile, Rotary Position Embedding ($\mathsf{RoPE}$) has shown superior performance in encoding positional information in long-context scenarios, significantly enhancing transformer models' expressiveness. Despite these empirical successes, the theoretical limitations of these technologies remain underexplored. In this study, we analyze the circuit complexity of Tensor Attention and $\mathsf{RoPE}$-based Tensor Attention, showing that with polynomial precision, constant-depth layers, and linear or sublinear hidden dimension, they cannot solve fixed membership problems or $(A_{F,r})^*$ closure problems, under the assumption that $\mathsf{TC}^0 \neq \mathsf{NC}^1$. These findings highlight a gap between the empirical performance and theoretical constraints of Tensor Attention and $\mathsf{RoPE}$-based Tensor Attention Transformers, offering insights that could guide the development of more theoretically grounded approaches to Transformer model design and scaling.
Abstract:We introduce \textbf{Gr}adient Descent with \textbf{A}daptive \textbf{M}omentum \textbf{S}caling (\textbf{Grams}), a novel optimization algorithm that decouples the direction and magnitude of parameter updates in deep learning. Unlike traditional optimizers that directly integrate momentum into updates, Grams separates the update direction, derived from current gradients, from momentum, which is used solely for adaptive magnitude scaling. This approach enables Grams to achieve improved loss descent compared to state-of-the-art cautious and momentum-based optimizers. We establish a global convergence guarantee for Grams and validate its effectiveness through extensive empirical evaluations. The results demonstrate Grams' superior performance, including faster convergence and better generalization, compared to widely-used optimizers such as Adam, Lion, and their cautious variants. Our results highlight Grams' potential as a transformative approach for efficient optimization in large-scale machine learning.
Abstract:In this paper, we analyze the computational limitations of Mamba and State-space Models (SSMs) by using the circuit complexity framework. Despite Mamba's stateful design and recent attention as a strong candidate to outperform Transformers, we have demonstrated that both Mamba and SSMs with $\mathrm{poly}(n)$-precision and constant-depth layers reside within the $\mathsf{DLOGTIME}$-uniform $\mathsf{TC}^0$ complexity class. This result indicates Mamba has the same computational capabilities as Transformer theoretically, and it cannot solve problems like arithmetic formula problems, boolean formula value problems, and permutation composition problems if $\mathsf{TC}^0 \neq \mathsf{NC}^1$. Therefore, it challenges the assumption Mamba is more computationally expressive than Transformers. Our contributions include rigorous proofs showing that Selective SSM and Mamba architectures can be simulated by $\mathsf{DLOGTIME}$-uniform $\mathsf{TC}^0$ circuits, and they cannot solve problems outside $\mathsf{TC}^0$.
Abstract:Modern Hopfield networks (MHNs) have emerged as powerful tools in deep learning, capable of replacing components such as pooling layers, LSTMs, and attention mechanisms. Recent advancements have enhanced their storage capacity, retrieval speed, and error rates. However, the fundamental limits of their computational expressiveness remain unexplored. Understanding the expressive power of MHNs is crucial for optimizing their integration into deep learning architectures. In this work, we establish rigorous theoretical bounds on the computational capabilities of MHNs using circuit complexity theory. Our key contribution is that we show that MHNs are $\mathsf{DLOGTIME}$-uniform $\mathsf{TC}^0$. Hence, unless $\mathsf{TC}^0 = \mathsf{NC}^1$, a $\mathrm{poly}(n)$-precision modern Hopfield networks with a constant number of layers and $O(n)$ hidden dimension cannot solve $\mathsf{NC}^1$-hard problems such as the undirected graph connectivity problem and the tree isomorphism problem. We also extended our results to Kernelized Hopfield Networks. These results demonstrate the limitation in the expressive power of the modern Hopfield networks. Moreover, Our theoretical analysis provides insights to guide the development of new Hopfield-based architectures.
Abstract:Recent advancements in generative models have significantly improved novel view synthesis (NVS) from multi-view data. However, existing methods depend on external multi-view alignment processes, such as explicit pose estimation or pre-reconstruction, which limits their flexibility and accessibility, especially when alignment is unstable due to insufficient overlap or occlusions between views. In this paper, we propose NVComposer, a novel approach that eliminates the need for explicit external alignment. NVComposer enables the generative model to implicitly infer spatial and geometric relationships between multiple conditional views by introducing two key components: 1) an image-pose dual-stream diffusion model that simultaneously generates target novel views and condition camera poses, and 2) a geometry-aware feature alignment module that distills geometric priors from dense stereo models during training. Extensive experiments demonstrate that NVComposer achieves state-of-the-art performance in generative multi-view NVS tasks, removing the reliance on external alignment and thus improving model accessibility. Our approach shows substantial improvements in synthesis quality as the number of unposed input views increases, highlighting its potential for more flexible and accessible generative NVS systems.