Abstract:Theory of Mind (ToM) significantly impacts human collaboration and communication as a crucial capability to understand others. When AI agents with ToM capability collaborate with humans, Mutual Theory of Mind (MToM) arises in such human-AI teams (HATs). The MToM process, which involves interactive communication and ToM-based strategy adjustment, affects the team's performance and collaboration process. To explore the MToM process, we conducted a mixed-design experiment using a large language model-driven AI agent with ToM and communication modules in a real-time shared-workspace task. We find that the agent's ToM capability does not significantly impact team performance but enhances human understanding of the agent and the feeling of being understood. Most participants in our study believe verbal communication increases human burden, and the results show that bidirectional communication leads to lower HAT performance. We discuss the results' implications for designing AI agents that collaborate with humans in real-time shared workspace tasks.
Abstract:The exponential growth of scientific literature requires effective management and extraction of valuable insights. While existing scientific search engines excel at delivering search results based on relational databases, they often neglect the analysis of collaborations between scientific entities and the evolution of ideas, as well as the in-depth analysis of content within scientific publications. The representation of heterogeneous graphs and the effective measurement, analysis, and mining of such graphs pose significant challenges. To address these challenges, we present AceMap, an academic system designed for knowledge discovery through academic graph. We present advanced database construction techniques to build the comprehensive AceMap database with large-scale academic publications that contain rich visual, textual, and numerical information. AceMap also employs innovative visualization, quantification, and analysis methods to explore associations and logical relationships among academic entities. AceMap introduces large-scale academic network visualization techniques centered on nebular graphs, providing a comprehensive view of academic networks from multiple perspectives. In addition, AceMap proposes a unified metric based on structural entropy to quantitatively measure the knowledge content of different academic entities. Moreover, AceMap provides advanced analysis capabilities, including tracing the evolution of academic ideas through citation relationships and concept co-occurrence, and generating concise summaries informed by this evolutionary process. In addition, AceMap uses machine reading methods to generate potential new ideas at the intersection of different fields. Exploring the integration of large language models and knowledge graphs is a promising direction for future research in idea evolution. Please visit \url{https://www.acemap.info} for further exploration.
Abstract:In the field of multi-agent learning, the challenge of mixed-motive cooperation is pronounced, given the inherent contradictions between individual and collective goals. Current research in this domain primarily focuses on incorporating domain knowledge into rewards or introducing additional mechanisms to foster cooperation. However, many of these methods suffer from the drawbacks of manual design costs and the lack of a theoretical grounding convergence procedure to the solution. To address this gap, we approach the mixed-motive game by modeling it as a differentiable game to study learning dynamics. We introduce a novel optimization method named Altruistic Gradient Adjustment (AgA) that employs gradient adjustments to novelly align individual and collective objectives. Furthermore, we provide theoretical proof that the selection of an appropriate alignment weight in AgA can accelerate convergence towards the desired solutions while effectively avoiding the undesired ones. The visualization of learning dynamics effectively demonstrates that AgA successfully achieves alignment between individual and collective objectives. Additionally, through evaluations conducted on established mixed-motive benchmarks such as the public good game, Cleanup, Harvest, and our modified mixed-motive SMAC environment, we validate AgA's capability to facilitate altruistic and fair collaboration.
Abstract:The significant advancements in large language models (LLMs) have presented novel opportunities for tackling planning and decision-making within multi-agent systems. However, as the number of agents increases, the issues of hallucination in LLMs and coordination in multi-agent systems (MAS) have become increasingly pronounced. Additionally, the efficient utilization of tokens becomes a critical consideration when employing LLMs to facilitate the interactions of large numbers of agents. In this paper, we present a novel framework aimed at enhancing coordination and decision-making capabilities of LLMs within large-scale multi-agent environments. Our approach draws inspiration from the actor-critic framework employed in multi-agent reinforcement learning, and we develop a modular and token-efficient solution that effectively addresses challenges presented by LLMs and MAS. Through evaluations conducted in experiments involving system resource allocation and robot grid transportation, we demonstrate the considerable advantages afforded by our proposed approach.
Abstract:AI models (including LLM) often rely on narrative question-answering (QA) datasets to provide customized QA functionalities to support downstream children education applications; however, existing datasets only include QA pairs that are grounded within the given storybook content, but children can learn more when teachers refer the storybook content to real-world knowledge (e.g., commonsense knowledge). We introduce the FairytaleCQA dataset, which is annotated by children education experts, to supplement 278 storybook narratives with educationally appropriate commonsense knowledge. The dataset has 5,868 QA pairs that not only originate from the storybook narrative but also contain the commonsense knowledge grounded by an external knowledge graph (i.e., ConceptNet). A follow-up experiment shows that a smaller model (T5-large) fine-tuned with FairytaleCQA reliably outperforms much larger prompt-engineered LLM (e.g., GPT-4) in this new QA-pair generation task (QAG). This result suggests that: 1) our dataset brings novel challenges to existing LLMs, and 2) human experts' data annotation are still critical as they have much nuanced knowledge that LLMs do not know in the children educational domain.
Abstract:Large Language Models (LLMs) have demonstrated considerable advances, and several claims have been made about their exceeding human performance. However, in real-world tasks, domain knowledge is often required. Low-resource learning methods like Active Learning (AL) have been proposed to tackle the cost of domain expert annotation, raising this question: Can LLMs surpass compact models trained with expert annotations in domain-specific tasks? In this work, we conduct an empirical experiment on four datasets from three different domains comparing SOTA LLMs with small models trained on expert annotations with AL. We found that small models can outperform GPT-3.5 with a few hundreds of labeled data, and they achieve higher or similar performance with GPT-4 despite that they are hundreds time smaller. Based on these findings, we posit that LLM predictions can be used as a warmup method in real-world applications and human experts remain indispensable in tasks involving data annotation driven by domain-specific knowledge.
Abstract:While most existing works on LLM prompt-engineering focus only on how to select a better set of data samples inside one single prompt input (In-Context Learning or ICL), why can't we design and leverage multiple prompt inputs together to further improve the LLM performance? In this work, we propose In-Context Sampling (ICS), a low-resource LLM prompt-engineering technique to produce the most confident prediction results by optimizing the construction of multiple ICL prompt inputs. Extensive experiments with two SOTA LLMs (FlanT5-XL and Mistral-7B) on three NLI datasets (e-SNLI, Multi-NLI, and ANLI) illustrate that ICS can consistently enhance LLM's prediction performance and confidence. An ablation study suggests that a diversity-based ICS strategy may further improve LLM's performance, which sheds light on a new yet promising future research direction.
Abstract:Zero-shot coordination (ZSC) is a new challenge focusing on generalizing learned coordination skills to unseen partners. Existing methods train the ego agent with partners from pre-trained or evolving populations. The agent's ZSC capability is typically evaluated with a few evaluation partners, including human and agent, and reported by mean returns. Current evaluation methods for ZSC capability still need to improve in constructing diverse evaluation partners and comprehensively measuring the ZSC capability. We aim to create a reliable, comprehensive, and efficient evaluation method for ZSC capability. We formally define the ideal 'diversity-complete' evaluation partners and propose the best response (BR) diversity, which is the population diversity of the BRs to the partners, to approximate the ideal evaluation partners. We propose an evaluation workflow including 'diversity-complete' evaluation partners construction and a multi-dimensional metric, the Best Response Proximity (BR-Prox) metric. BR-Prox quantifies the ZSC capability as the performance similarity to each evaluation partner's approximate best response, demonstrating generalization capability and improvement potential. We re-evaluate strong ZSC methods in the Overcooked environment using the proposed evaluation workflow. Surprisingly, the results in some of the most used layouts fail to distinguish the performance of different ZSC methods. Moreover, the evaluated ZSC methods must produce more diverse and high-performing training partners. Our proposed evaluation workflow calls for a change in how we efficiently evaluate ZSC methods as a supplement to human evaluation.
Abstract:Despite the plethora of telehealth applications to assist home-based older adults and healthcare providers, basic messaging and phone calls are still the most common communication methods, which suffer from limited availability, information loss, and process inefficiencies. One promising solution to facilitate patient-provider communication is to leverage large language models (LLMs) with their powerful natural conversation and summarization capability. However, there is a limited understanding of LLMs' role during the communication. We first conducted two interview studies with both older adults (N=10) and healthcare providers (N=9) to understand their needs and opportunities for LLMs in patient-provider asynchronous communication. Based on the insights, we built an LLM-powered communication system, Talk2Care, and designed interactive components for both groups: (1) For older adults, we leveraged the convenience and accessibility of voice assistants (VAs) and built an LLM-powered VA interface for effective information collection. (2) For health providers, we built an LLM-based dashboard to summarize and present important health information based on older adults' conversations with the VA. We further conducted two user studies with older adults and providers to evaluate the usability of the system. The results showed that Talk2Care could facilitate the communication process, enrich the health information collected from older adults, and considerably save providers' efforts and time. We envision our work as an initial exploration of LLMs' capability in the intersection of healthcare and interpersonal communication.
Abstract:Today's AI systems for medical decision support often succeed on benchmark datasets in research papers but fail in real-world deployment. This work focuses on the decision making of sepsis, an acute life-threatening systematic infection that requires an early diagnosis with high uncertainty from the clinician. Our aim is to explore the design requirements for AI systems that can support clinical experts in making better decisions for the early diagnosis of sepsis. The study begins with a formative study investigating why clinical experts abandon an existing AI-powered Sepsis predictive module in their electrical health record (EHR) system. We argue that a human-centered AI system needs to support human experts in the intermediate stages of a medical decision-making process (e.g., generating hypotheses or gathering data), instead of focusing only on the final decision. Therefore, we build SepsisLab based on a state-of-the-art AI algorithm and extend it to predict the future projection of sepsis development, visualize the prediction uncertainty, and propose actionable suggestions (i.e., which additional laboratory tests can be collected) to reduce such uncertainty. Through heuristic evaluation with six clinicians using our prototype system, we demonstrate that SepsisLab enables a promising human-AI collaboration paradigm for the future of AI-assisted sepsis diagnosis and other high-stakes medical decision making.