Abstract:This paper explores effective numerical feature embedding for Click-Through Rate prediction in streaming environments. Conventional static binning methods rely on offline statistics of numerical distributions; however, this inherently two-stage process often triggers semantic drift during bin boundary updates. While neural embedding methods enable end-to-end learning, they often discard explicit distributional information. Integrating such information end-to-end is challenging because streaming features often violate the i.i.d. assumption, precluding unbiased estimation of the population distribution via the expectation of order statistics. Furthermore, the critical context dependency of numerical distributions is often neglected. To this end, we propose DAES, an end-to-end framework designed to tackle numerical feature embedding in streaming training scenarios by integrating distributional information with an adaptive modulation mechanism. Specifically, we introduce an efficient reservoir-sampling-based distribution estimation method and two field-aware distribution modulation strategies to capture streaming distributions and field-dependent semantics. DAES significantly outperforms existing approaches as demonstrated by extensive offline and online experiments and has been fully deployed on a leading short-video platform with hundreds of millions of daily active users.
Abstract:Federated recommendation provides a privacy-preserving solution for training recommender systems without centralizing user interactions. However, existing methods follow an ID-indexed communication paradigm that transmit whole item embeddings between clients and the server, which has three major limitations: 1) consumes uncontrollable communication resources, 2) the uploaded item information cannot generalize to related non-interacted items, and 3) is sensitive to client noisy feedback. To solve these problems, it is necessary to fundamentally change the existing ID-indexed communication paradigm. Therefore, we propose a feature-indexed communication paradigm that transmits feature code embeddings as codebooks rather than raw item embeddings. Building on this paradigm, we present RQFedRec, which assigns each item a list of discrete code IDs via Residual Quantization (RQ)-Kmeans. Each client generates and trains code embeddings as codebooks based on discrete code IDs provided by the server, and the server collects and aggregates these codebooks rather than item embeddings. This design makes communication controllable since the codebooks could cover all items, enabling updates to propagate across related items in same code ID. In addition, since code embedding represents many items, which is more robust to a single noisy item. To jointly capture semantic and collaborative information, RQFedRec further adopts a collaborative-semantic dual-channel aggregation with a curriculum strategy that emphasizes semantic codes early and gradually increases the contribution of collaborative codes over training. Extensive experiments on real-world datasets demonstrate that RQFedRec consistently outperforms state-of-the-art federated recommendation baselines while significantly reducing communication overhead.
Abstract:Social cues, which convey others' presence, behaviors, or identities, play a crucial role in human information seeking by helping individuals judge relevance and trustworthiness. However, existing LLM-based search systems primarily rely on semantic features, creating a misalignment with the socialized cognition underlying natural information seeking. To address this gap, we explore how the integration of social cues into LLM-based search influences users' perceptions, experiences, and behaviors. Focusing on social media platforms that are beginning to adopt LLM-based search, we integrate design workshops, the implementation of the prototype system (SoulSeek), a between-subjects study, and mixed-method analyses to examine both outcome- and process-level findings. The workshop informs the prototype's cue-integrated design. The study shows that social cues improve perceived outcomes and experiences, promote reflective information behaviors, and reveal limits of current LLM-based search. We propose design implications emphasizing better social-knowledge understanding, personalized cue settings, and controllable interactions.




Abstract:Trained on various human-authored corpora, Large Language Models (LLMs) have demonstrated a certain capability of reflecting specific human-like traits (e.g., personality or values) by prompting, benefiting applications like personalized LLMs and social simulations. However, existing methods suffer from the superficial elicitation problem: LLMs can only be steered to mimic shallow and unstable stylistic patterns, failing to embody the desired traits precisely and consistently across diverse tasks like humans. To address this challenge, we propose IROTE, a novel in-context method for stable and transferable trait elicitation. Drawing on psychological theories suggesting that traits are formed through identity-related reflection, our method automatically generates and optimizes a textual self-reflection within prompts, which comprises self-perceived experience, to stimulate LLMs' trait-driven behavior. The optimization is performed by iteratively maximizing an information-theoretic objective that enhances the connections between LLMs' behavior and the target trait, while reducing noisy redundancy in reflection without any fine-tuning, leading to evocative and compact trait reflection. Extensive experiments across three human trait systems manifest that one single IROTE-generated self-reflection can induce LLMs' stable impersonation of the target trait across diverse downstream tasks beyond simple questionnaire answering, consistently outperforming existing strong baselines.
Abstract:Large language models (LLMs) have demonstrated exceptional performance in understanding and generating semantic patterns, making them promising candidates for sequential recommendation tasks. However, when combined with conventional recommendation models (CRMs), LLMs often face challenges related to high inference costs and static knowledge transfer methods. In this paper, we propose a novel mutual distillation framework, LLMD4Rec, that fosters dynamic and bidirectional knowledge exchange between LLM-centric and CRM-based recommendation systems. Unlike traditional unidirectional distillation methods, LLMD4Rec enables iterative optimization by alternately refining both models, enhancing the semantic understanding of CRMs and enriching LLMs with collaborative signals from user-item interactions. By leveraging sample-wise adaptive weighting and aligning output distributions, our approach eliminates the need for additional parameters while ensuring effective knowledge transfer. Extensive experiments on real-world datasets demonstrate that LLMD4Rec significantly improves recommendation accuracy across multiple benchmarks without increasing inference costs. This method provides a scalable and efficient solution for combining the strengths of both LLMs and CRMs in sequential recommendation systems.
Abstract:Recommendation algorithms rely on user historical interactions to deliver personalized suggestions, which raises significant privacy concerns. Federated recommendation algorithms tackle this issue by combining local model training with server-side model aggregation, where most existing algorithms use a uniform weighted summation to aggregate item embeddings from different client models. This approach has three major limitations: 1) information loss during aggregation, 2) failure to retain personalized local features, and 3) incompatibility with parameter-free recommendation algorithms. To address these limitations, we first review the development of recommendation algorithms and recognize that their core function is to share collaborative information, specifically the global relationship between users and items. With this understanding, we propose a novel aggregation paradigm named collaborative information aggregation, which focuses on sharing collaborative information rather than item parameters. Based on this new paradigm, we introduce the federated collaborative information aggregation (FedCIA) method for privacy-preserving recommendation. This method requires each client to upload item similarity matrices for aggregation, which allows clients to align their local models without constraining embeddings to a unified vector space. As a result, it mitigates information loss caused by direct summation, preserves the personalized embedding distributions of individual clients, and supports the aggregation of parameter-free models. Theoretical analysis and experimental results on real-world datasets demonstrate the superior performance of FedCIA compared with the state-of-the-art federated recommendation algorithms. Code is available at https://github.com/Mingzhe-Han/FedCIA.
Abstract:Recommender systems often suffer from popularity bias, where frequently interacted items are overrepresented in recommendations. This bias stems from propensity factors influencing training data, leading to imbalanced exposure. In this paper, we introduce a Fair Sampling (FS) approach to address this issue by ensuring that both users and items are selected with equal probability as positive and negative instances. Unlike traditional inverse propensity score (IPS) methods, FS does not require propensity estimation, eliminating errors associated with inaccurate calculations. Our theoretical analysis demonstrates that FS effectively neutralizes the influence of propensity factors, achieving unbiased learning. Experimental results validate that FS outperforms state-of-the-art methods in both point-wise and pair-wise recommendation tasks, enhancing recommendation fairness without sacrificing accuracy. The implementation is available at https://anonymous.4open.science/r/Fair-Sampling.
Abstract:Large Language Model (LLM)-based user agents have emerged as a powerful tool for improving recommender systems by simulating user interactions. However, existing methods struggle with cross-domain scenarios due to inefficient memory structures, leading to irrelevant information retention and failure to account for social influence factors such as popularity. To address these limitations, we introduce AgentCF++, a novel framework featuring a dual-layer memory architecture and a two-step fusion mechanism to filter domain-specific preferences effectively. Additionally, we propose interest groups with shared memory, allowing the model to capture the impact of popularity trends on users with similar interests. Through extensive experiments on multiple cross-domain datasets, AgentCF++ demonstrates superior performance over baseline models, highlighting its effectiveness in refining user behavior simulation for recommender systems. Our code is available at https://anonymous.4open.science/r/AgentCF-plus.




Abstract:Current recommendation systems powered by large language models (LLMs) often underutilize their reasoning capabilities due to a lack of explicit logical structuring. To address this limitation, we introduce CoT-Rec, a framework that integrates Chain-of-Thought (CoT) reasoning into LLM-driven recommendations by incorporating two crucial processes: user preference analysis and item perception evaluation. CoT-Rec operates in two key phases: (1) personalized data extraction, where user preferences and item perceptions are identified, and (2) personalized data application, where this information is leveraged to refine recommendations. Our experimental analysis demonstrates that CoT-Rec improves recommendation accuracy by making better use of LLMs' reasoning potential. The implementation is publicly available at https://anonymous.4open.science/r/CoT-Rec.
Abstract:As Large Language Models (LLMs) achieve remarkable breakthroughs, aligning their values with humans has become imperative for their responsible development and customized applications. However, there still lack evaluations of LLMs values that fulfill three desirable goals. (1) Value Clarification: We expect to clarify the underlying values of LLMs precisely and comprehensively, while current evaluations focus narrowly on safety risks such as bias and toxicity. (2) Evaluation Validity: Existing static, open-source benchmarks are prone to data contamination and quickly become obsolete as LLMs evolve. Additionally, these discriminative evaluations uncover LLMs' knowledge about values, rather than valid assessments of LLMs' behavioral conformity to values. (3) Value Pluralism: The pluralistic nature of human values across individuals and cultures is largely ignored in measuring LLMs value alignment. To address these challenges, we presents the Value Compass Leaderboard, with three correspondingly designed modules. It (i) grounds the evaluation on motivationally distinct \textit{basic values to clarify LLMs' underlying values from a holistic view; (ii) applies a \textit{generative evolving evaluation framework with adaptive test items for evolving LLMs and direct value recognition from behaviors in realistic scenarios; (iii) propose a metric that quantifies LLMs alignment with a specific value as a weighted sum over multiple dimensions, with weights determined by pluralistic values.