Abstract:As Large Language Models (LLMs) achieve remarkable breakthroughs, aligning their values with humans has become imperative for their responsible development and customized applications. However, there still lack evaluations of LLMs values that fulfill three desirable goals. (1) Value Clarification: We expect to clarify the underlying values of LLMs precisely and comprehensively, while current evaluations focus narrowly on safety risks such as bias and toxicity. (2) Evaluation Validity: Existing static, open-source benchmarks are prone to data contamination and quickly become obsolete as LLMs evolve. Additionally, these discriminative evaluations uncover LLMs' knowledge about values, rather than valid assessments of LLMs' behavioral conformity to values. (3) Value Pluralism: The pluralistic nature of human values across individuals and cultures is largely ignored in measuring LLMs value alignment. To address these challenges, we presents the Value Compass Leaderboard, with three correspondingly designed modules. It (i) grounds the evaluation on motivationally distinct \textit{basic values to clarify LLMs' underlying values from a holistic view; (ii) applies a \textit{generative evolving evaluation framework with adaptive test items for evolving LLMs and direct value recognition from behaviors in realistic scenarios; (iii) propose a metric that quantifies LLMs alignment with a specific value as a weighted sum over multiple dimensions, with weights determined by pluralistic values.
Abstract:Sequential recommendation methods can capture dynamic user preferences from user historical interactions to achieve better performance. However, most existing methods only use past information extracted from user historical interactions to train the models, leading to the deviations of user preference modeling. Besides past information, future information is also available during training, which contains the ``oracle'' user preferences in the future and will be beneficial to model dynamic user preferences. Therefore, we propose an oracle-guided dynamic user preference modeling method for sequential recommendation (Oracle4Rec), which leverages future information to guide model training on past information, aiming to learn ``forward-looking'' models. Specifically, Oracle4Rec first extracts past and future information through two separate encoders, then learns a forward-looking model through an oracle-guiding module which minimizes the discrepancy between past and future information. We also tailor a two-phase model training strategy to make the guiding more effective. Extensive experiments demonstrate that Oracle4Rec is superior to state-of-the-art sequential methods. Further experiments show that Oracle4Rec can be leveraged as a generic module in other sequential recommendation methods to improve their performance with a considerable margin.
Abstract:Although there have been automated approaches and tools supporting toxicity censorship for social posts, most of them focus on detection. Toxicity censorship is a complex process, wherein detection is just an initial task and a user can have further needs such as rationale understanding and content modification. For this problem, we conduct a needfinding study to investigate people's diverse needs in toxicity censorship and then build a ChatGPT-based censorship tool named DeMod accordingly. DeMod is equipped with the features of explainable Detection and personalized Modification, providing fine-grained detection results, detailed explanations, and personalized modification suggestions. We also implemented the tool and recruited 35 Weibo users for evaluation. The results suggest DeMod's multiple strengths like the richness of functionality, the accuracy of censorship, and ease of use. Based on the findings, we further propose several insights into the design of content censorship systems.
Abstract:Personalized algorithms can inadvertently expose users to discomforting recommendations, potentially triggering negative consequences. The subjectivity of discomfort and the black-box nature of these algorithms make it challenging to effectively identify and filter such content. To address this, we first conducted a formative study to understand users' practices and expectations regarding discomforting recommendation filtering. Then, we designed a Large Language Model (LLM)-based tool named DiscomfortFilter, which constructs an editable preference profile for a user and helps the user express filtering needs through conversation to mask discomforting preferences within the profile. Based on the edited profile, DiscomfortFilter facilitates the discomforting recommendations filtering in a plug-and-play manner, maintaining flexibility and transparency. The constructed preference profile improves LLM reasoning and simplifies user alignment, enabling a 3.8B open-source LLM to rival top commercial models in an offline proxy task. A one-week user study with 24 participants demonstrated the effectiveness of DiscomfortFilter, while also highlighting its potential impact on platform recommendation outcomes. We conclude by discussing the ongoing challenges, highlighting its relevance to broader research, assessing stakeholder impact, and outlining future research directions.
Abstract:Graph Neural Networks (GNNs) have demonstrated effectiveness in collaborative filtering tasks due to their ability to extract powerful structural features. However, combining the graph features extracted from user-item interactions and auxiliary features extracted from user genres and item properties remains a challenge. Currently available fusion methods face two major issues: 1) simple methods such as concatenation and summation are generic, but not accurate in capturing feature relationships; 2) task-specific methods like attention mechanisms and meta paths may not be suitable for general feature fusion. To address these challenges, we present GraphTransfer, a simple but universal feature fusion framework for GNN-based collaborative filtering. Our method accurately fuses different types of features by first extracting graph features from the user-item interaction graph and auxiliary features from users and items using GCN. The proposed cross fusion module then effectively bridges the semantic gaps between the interaction scores of different features. Theoretical analysis and experiments on public datasets show that GraphTransfer outperforms other feature fusion methods in CF tasks. Additionally, we demonstrate the universality of our framework via empirical studies in three other scenarios, showing that GraphTransfer leads to significant improvements in the performance of CF algorithms.
Abstract:Recent recommender systems aim to provide not only accurate recommendations but also explanations that help users understand them better. However, most existing explainable recommendations only consider the importance of content in reviews, such as words or aspects, and ignore the ordering relationship among them. This oversight neglects crucial ordering dimensions in the human decision-making process, leading to suboptimal performance. Therefore, in this paper, we propose Aspect Order Tree-based (AOTree) explainable recommendation method, inspired by the Order Effects Theory from cognitive and decision psychology, in order to capture the dependency relationships among decisive factors. We first validate the theory in the recommendation scenario by analyzing the reviews of the users. Then, according to the theory, the proposed AOTree expands the construction of the decision tree to capture aspect orders in users' decision-making processes, and use attention mechanisms to make predictions based on the aspect orders. Extensive experiments demonstrate our method's effectiveness on rating predictions, and our approach aligns more consistently with the user' s decision-making process by displaying explanations in a particular order, thereby enhancing interpretability.
Abstract:Despite their prevalence in deep-learning communities, over-parameterized models convey high demands of computational costs for proper training. This work studies the fine-grained, modular-level learning dynamics of over-parameterized models to attain a more efficient and fruitful training strategy. Empirical evidence reveals that when scaling down into network modules, such as heads in self-attention models, we can observe varying learning patterns implicitly associated with each module's trainability. To describe such modular-level learning capabilities, we introduce a novel concept dubbed modular neural tangent kernel (mNTK), and we demonstrate that the quality of a module's learning is tightly associated with its mNTK's principal eigenvalue $\lambda_{\max}$. A large $\lambda_{\max}$ indicates that the module learns features with better convergence, while those miniature ones may impact generalization negatively. Inspired by the discovery, we propose a novel training strategy termed Modular Adaptive Training (MAT) to update those modules with their $\lambda_{\max}$ exceeding a dynamic threshold selectively, concentrating the model on learning common features and ignoring those inconsistent ones. Unlike most existing training schemes with a complete BP cycle across all network modules, MAT can significantly save computations by its partially-updating strategy and can further improve performance. Experiments show that MAT nearly halves the computational cost of model training and outperforms the accuracy of baselines.
Abstract:Large language models (LLMs) have revolutionized the role of AI, yet also pose potential risks of propagating unethical content. Alignment technologies have been introduced to steer LLMs towards human preference, gaining increasing attention. Despite notable breakthroughs in this direction, existing methods heavily rely on high-quality positive-negative training pairs, suffering from noisy labels and the marginal distinction between preferred and dispreferred response data. Given recent LLMs' proficiency in generating helpful responses, this work pivots towards a new research focus: achieving alignment using solely human-annotated negative samples, preserving helpfulness while reducing harmfulness. For this purpose, we propose Distributional Dispreference Optimization (D$^2$O), which maximizes the discrepancy between the generated responses and the dispreferred ones to effectively eschew harmful information. We theoretically demonstrate that D$^2$O is equivalent to learning a distributional instead of instance-level preference model reflecting human dispreference against the distribution of negative responses. Besides, D$^2$O integrates an implicit Jeffrey Divergence regularization to balance the exploitation and exploration of reference policies and converges to a non-negative one during training. Extensive experiments demonstrate that our method achieves comparable generation quality and surpasses the latest baselines in producing less harmful and more informative responses with better training stability and faster convergence.
Abstract:Graph Signal Processing (GSP) based recommendation algorithms have recently attracted lots of attention due to its high efficiency. However, these methods failed to consider the importance of various interactions that reflect unique user/item characteristics and failed to utilize user and item high-order neighborhood information to model user preference, thus leading to sub-optimal performance. To address the above issues, we propose a frequency-aware graph signal processing method (FaGSP) for collaborative filtering. Firstly, we design a Cascaded Filter Module, consisting of an ideal high-pass filter and an ideal low-pass filter that work in a successive manner, to capture both unique and common user/item characteristics to more accurately model user preference. Then, we devise a Parallel Filter Module, consisting of two low-pass filters that can easily capture the hierarchy of neighborhood, to fully utilize high-order neighborhood information of users/items for more accurate user preference modeling. Finally, we combine these two modules via a linear model to further improve recommendation accuracy. Extensive experiments on six public datasets demonstrate the superiority of our method from the perspectives of prediction accuracy and training efficiency compared with state-of-the-art GCN-based recommendation methods and GSP-based recommendation methods.
Abstract:Large Language Models (LLMs) have demonstrated considerable advances, and several claims have been made about their exceeding human performance. However, in real-world tasks, domain knowledge is often required. Low-resource learning methods like Active Learning (AL) have been proposed to tackle the cost of domain expert annotation, raising this question: Can LLMs surpass compact models trained with expert annotations in domain-specific tasks? In this work, we conduct an empirical experiment on four datasets from three different domains comparing SOTA LLMs with small models trained on expert annotations with AL. We found that small models can outperform GPT-3.5 with a few hundreds of labeled data, and they achieve higher or similar performance with GPT-4 despite that they are hundreds time smaller. Based on these findings, we posit that LLM predictions can be used as a warmup method in real-world applications and human experts remain indispensable in tasks involving data annotation driven by domain-specific knowledge.