Abstract:Recommender systems often suffer from popularity bias, where frequently interacted items are overrepresented in recommendations. This bias stems from propensity factors influencing training data, leading to imbalanced exposure. In this paper, we introduce a Fair Sampling (FS) approach to address this issue by ensuring that both users and items are selected with equal probability as positive and negative instances. Unlike traditional inverse propensity score (IPS) methods, FS does not require propensity estimation, eliminating errors associated with inaccurate calculations. Our theoretical analysis demonstrates that FS effectively neutralizes the influence of propensity factors, achieving unbiased learning. Experimental results validate that FS outperforms state-of-the-art methods in both point-wise and pair-wise recommendation tasks, enhancing recommendation fairness without sacrificing accuracy. The implementation is available at https://anonymous.4open.science/r/Fair-Sampling.
Abstract:Large Language Model (LLM)-based user agents have emerged as a powerful tool for improving recommender systems by simulating user interactions. However, existing methods struggle with cross-domain scenarios due to inefficient memory structures, leading to irrelevant information retention and failure to account for social influence factors such as popularity. To address these limitations, we introduce AgentCF++, a novel framework featuring a dual-layer memory architecture and a two-step fusion mechanism to filter domain-specific preferences effectively. Additionally, we propose interest groups with shared memory, allowing the model to capture the impact of popularity trends on users with similar interests. Through extensive experiments on multiple cross-domain datasets, AgentCF++ demonstrates superior performance over baseline models, highlighting its effectiveness in refining user behavior simulation for recommender systems. Our code is available at https://anonymous.4open.science/r/AgentCF-plus.
Abstract:Current recommendation systems powered by large language models (LLMs) often underutilize their reasoning capabilities due to a lack of explicit logical structuring. To address this limitation, we introduce CoT-Rec, a framework that integrates Chain-of-Thought (CoT) reasoning into LLM-driven recommendations by incorporating two crucial processes: user preference analysis and item perception evaluation. CoT-Rec operates in two key phases: (1) personalized data extraction, where user preferences and item perceptions are identified, and (2) personalized data application, where this information is leveraged to refine recommendations. Our experimental analysis demonstrates that CoT-Rec improves recommendation accuracy by making better use of LLMs' reasoning potential. The implementation is publicly available at https://anonymous.4open.science/r/CoT-Rec.
Abstract:Sequential recommendation methods can capture dynamic user preferences from user historical interactions to achieve better performance. However, most existing methods only use past information extracted from user historical interactions to train the models, leading to the deviations of user preference modeling. Besides past information, future information is also available during training, which contains the ``oracle'' user preferences in the future and will be beneficial to model dynamic user preferences. Therefore, we propose an oracle-guided dynamic user preference modeling method for sequential recommendation (Oracle4Rec), which leverages future information to guide model training on past information, aiming to learn ``forward-looking'' models. Specifically, Oracle4Rec first extracts past and future information through two separate encoders, then learns a forward-looking model through an oracle-guiding module which minimizes the discrepancy between past and future information. We also tailor a two-phase model training strategy to make the guiding more effective. Extensive experiments demonstrate that Oracle4Rec is superior to state-of-the-art sequential methods. Further experiments show that Oracle4Rec can be leveraged as a generic module in other sequential recommendation methods to improve their performance with a considerable margin.
Abstract:Despite their prevalence in deep-learning communities, over-parameterized models convey high demands of computational costs for proper training. This work studies the fine-grained, modular-level learning dynamics of over-parameterized models to attain a more efficient and fruitful training strategy. Empirical evidence reveals that when scaling down into network modules, such as heads in self-attention models, we can observe varying learning patterns implicitly associated with each module's trainability. To describe such modular-level learning capabilities, we introduce a novel concept dubbed modular neural tangent kernel (mNTK), and we demonstrate that the quality of a module's learning is tightly associated with its mNTK's principal eigenvalue $\lambda_{\max}$. A large $\lambda_{\max}$ indicates that the module learns features with better convergence, while those miniature ones may impact generalization negatively. Inspired by the discovery, we propose a novel training strategy termed Modular Adaptive Training (MAT) to update those modules with their $\lambda_{\max}$ exceeding a dynamic threshold selectively, concentrating the model on learning common features and ignoring those inconsistent ones. Unlike most existing training schemes with a complete BP cycle across all network modules, MAT can significantly save computations by its partially-updating strategy and can further improve performance. Experiments show that MAT nearly halves the computational cost of model training and outperforms the accuracy of baselines.
Abstract:Graph Signal Processing (GSP) based recommendation algorithms have recently attracted lots of attention due to its high efficiency. However, these methods failed to consider the importance of various interactions that reflect unique user/item characteristics and failed to utilize user and item high-order neighborhood information to model user preference, thus leading to sub-optimal performance. To address the above issues, we propose a frequency-aware graph signal processing method (FaGSP) for collaborative filtering. Firstly, we design a Cascaded Filter Module, consisting of an ideal high-pass filter and an ideal low-pass filter that work in a successive manner, to capture both unique and common user/item characteristics to more accurately model user preference. Then, we devise a Parallel Filter Module, consisting of two low-pass filters that can easily capture the hierarchy of neighborhood, to fully utilize high-order neighborhood information of users/items for more accurate user preference modeling. Finally, we combine these two modules via a linear model to further improve recommendation accuracy. Extensive experiments on six public datasets demonstrate the superiority of our method from the perspectives of prediction accuracy and training efficiency compared with state-of-the-art GCN-based recommendation methods and GSP-based recommendation methods.
Abstract:Click-through rate (CTR) prediction is widely used in academia and industry. Most CTR tasks fall into a feature embedding \& feature interaction paradigm, where the accuracy of CTR prediction is mainly improved by designing practical feature interaction structures. However, recent studies have argued that the fixed feature embedding learned only through the embedding layer limits the performance of existing CTR models. Some works apply extra modules on top of the embedding layer to dynamically refine feature representations in different instances, making it effective and easy to integrate with existing CTR methods. Despite the promising results, there is a lack of a systematic review and summarization of this new promising direction on the CTR task. To fill this gap, we comprehensively summarize and define a new module, namely \textbf{feature refinement} (FR) module, that can be applied between feature embedding and interaction layers. We extract 14 FR modules from previous works, including instances where the FR module was proposed but not clearly defined or explained. We fully assess the effectiveness and compatibility of existing FR modules through comprehensive and extensive experiments with over 200 augmented models and over 4,000 runs for more than 15,000 GPU hours. The results offer insightful guidelines for researchers, and all benchmarking code and experimental results are open-sourced. In addition, we present a new architecture of assigning independent FR modules to separate sub-networks for parallel CTR models, as opposed to the conventional method of inserting a shared FR module on top of the embedding layer. Our approach is also supported by comprehensive experiments demonstrating its effectiveness.
Abstract:Recommender systems are important for providing personalized services to users, but the vast amount of collected user data has raised concerns about privacy (e.g., sensitive data), security (e.g., malicious data) and utility (e.g., toxic data). To address these challenges, recommendation unlearning has emerged as a promising approach, which allows specific data and models to be forgotten, mitigating the risks of sensitive/malicious/toxic user data. However, existing methods often struggle to balance completeness, utility, and efficiency, i.e., compromising one for the other, leading to suboptimal recommendation unlearning. In this paper, we propose an Interaction and Mapping Matrices Correction (IMCorrect) method for recommendation unlearning. Firstly, we reveal that many collaborative filtering (CF) algorithms can be formulated as mapping-based approach, in which the recommendation results can be obtained by multiplying the user-item interaction matrix with a mapping matrix. Then, IMCorrect can achieve efficient recommendation unlearning by correcting the interaction matrix and enhance the completeness and utility by correcting the mapping matrix, all without costly model retraining. Unlike existing methods, IMCorrect is a whitebox model that offers greater flexibility in handling various recommendation unlearning scenarios. Additionally, it has the unique capability of incrementally learning from new data, which further enhances its practicality. We conducted comprehensive experiments to validate the effectiveness of IMCorrect and the results demonstrate that IMCorrect is superior in completeness, utility, and efficiency, and is applicable in many recommendation unlearning scenarios.
Abstract:Understanding the evolution of online news communities is essential for designing more effective news recommender systems. However, due to the lack of appropriate datasets and platforms, the existing literature is limited in understanding the impact of recommender systems on this evolutionary process and the underlying mechanisms, resulting in sub-optimal system designs that may affect long-term utilities. In this work, we propose SimuLine, a simulation platform to dissect the evolution of news recommendation ecosystems and present a detailed analysis of the evolutionary process and underlying mechanisms. SimuLine first constructs a latent space well reflecting the human behaviors, and then simulates the news recommendation ecosystem via agent-based modeling. Based on extensive simulation experiments and the comprehensive analysis framework consisting of quantitative metrics, visualization, and textual explanations, we analyze the characteristics of each evolutionary phase from the perspective of life-cycle theory, and propose a relationship graph illustrating the key factors and affecting mechanisms. Furthermore, we explore the impacts of recommender system designing strategies, including the utilization of cold-start news, breaking news, and promotion, on the evolutionary process, which shed new light on the design of recommender systems.
Abstract:Safeguarding personal information is paramount for healthcare data sharing, a challenging issue without any silver bullet thus far. We study the prospect of a recent deep-learning advent, dataset condensation (DC), in sharing healthcare data for AI research, and the results are promising. The condensed data abstracts original records and irreversibly conceals individual-level knowledge to achieve a bona fide de-identification, which permits free sharing. Moreover, the original deep-learning utilities are well preserved in the condensed data with compressed volume and accelerated model convergences. In PhysioNet-2012, a condensed dataset of 20 samples can orient deep models attaining 80.3% test AUC of mortality prediction (versus 85.8% of 5120 original records), an inspiring discovery generalised to MIMIC-III and Coswara datasets. We also interpret the inhere privacy protections of DC through theoretical analysis and empirical evidence. Dataset condensation opens a new gate to sharing healthcare data for AI research with multiple desirable traits.