Abstract:Language is not monolithic. While many benchmarks are used as proxies to systematically estimate Large Language Models' (LLM) performance in real-life tasks, they tend to ignore the nuances of within-language variation and thus fail to model the experience of speakers of minority dialects. Focusing on African American Vernacular English (AAVE), we present the first study on LLMs' fairness and robustness to a dialect in canonical reasoning tasks (algorithm, math, logic, and comprehensive reasoning). We hire AAVE speakers, including experts with computer science backgrounds, to rewrite seven popular benchmarks, such as HumanEval and GSM8K. The result of this effort is ReDial, a dialectal benchmark comprising $1.2K+$ parallel query pairs in Standardized English and AAVE. We use ReDial to evaluate state-of-the-art LLMs, including GPT-4o/4/3.5-turbo, LLaMA-3.1/3, Mistral, and Phi-3. We find that, compared to Standardized English, almost all of these widely used models show significant brittleness and unfairness to queries in AAVE. Furthermore, AAVE queries can degrade performance more substantially than misspelled texts in Standardized English, even when LLMs are more familiar with the AAVE queries. Finally, asking models to rephrase questions in Standardized English does not close the performance gap but generally introduces higher costs. Overall, our findings indicate that LLMs provide unfair service to dialect users in complex reasoning tasks. Code can be found at https://github.com/fangru-lin/redial_dialect_robustness_fairness.git.
Abstract:The rapid progress in Large Language Models (LLMs) poses potential risks such as generating unethical content. Assessing LLMs' values can help expose their misalignment, but relies on reference-free evaluators, e.g., fine-tuned LLMs or close-source ones like GPT-4, to identify values reflected in generated responses. Nevertheless, these evaluators face two challenges in open-ended value evaluation: they should align with changing human value definitions with minimal annotation, against their own bias (adaptability), and detect varying value expressions and scenarios robustly (generalizability). To handle these challenges, we introduce CLAVE, a novel framework which integrates two complementary LLMs, a large one to extract high-level value concepts from a few human labels, leveraging its extensive knowledge and generalizability, and a smaller one fine-tuned on such concepts to better align with human value understanding. This dual-model approach enables calibration with any value systems using <100 human-labeled samples per value type. Then we present ValEval, a comprehensive dataset comprising 13k+ (text,value,label) tuples across diverse domains, covering three major value systems. We benchmark the capabilities of 12+ popular LLM evaluators and analyze their strengths and weaknesses. Our findings reveal that combining fine-tuned small models and prompt-based large ones serves as a superior balance in value evaluation.
Abstract:Hyperspectral Image Classification (HSC) is a challenging task due to the high dimensionality and complex nature of Hyperspectral (HS) data. Traditional Machine Learning approaches while effective, face challenges in real-world data due to varying optimal feature sets, subjectivity in human-driven design, biases, and limitations. Traditional approaches encounter the curse of dimensionality, struggle with feature selection and extraction, lack spatial information consideration, exhibit limited robustness to noise, face scalability issues, and may not adapt well to complex data distributions. In recent years, Deep Learning (DL) techniques have emerged as powerful tools for addressing these challenges. This survey provides a comprehensive overview of the current trends and future prospects in HSC, focusing on the advancements from DL models to the emerging use of Transformers. We review the key concepts, methodologies, and state-of-the-art approaches in DL for HSC. We explore the potential of Transformer-based models in HSC, outlining their benefits and challenges. We also delve into emerging trends in HSC, as well as thorough discussions on Explainable AI and Interoperability concepts along with Diffusion Models (image denoising, feature extraction, and image fusion). Lastly, we address several open challenges and research questions pertinent to HSC. Comprehensive experimental results have been undertaken using three HS datasets to verify the efficacy of various conventional DL models and Transformers. Finally, we outline future research directions and potential applications that can further enhance the accuracy and efficiency of HSC. The Source code is available at \href{https://github.com/mahmad00/Conventional-to-Transformer-for-Hyperspectral-Image-Classification-Survey-2024}{github.com/mahmad00}.
Abstract:Current open-source large language models (LLMs) are often undergone careful safety alignment before public release. Some attack methods have also been proposed that help check for safety vulnerabilities in LLMs to ensure alignment robustness. However, many of these methods have moderate attack success rates. Even when successful, the harmfulness of their outputs cannot be guaranteed, leading to suspicions that these methods have not accurately identified the safety vulnerabilities of LLMs. In this paper, we introduce a LLM attack method utilizing concept-based model explanation, where we extract safety concept activation vectors (SCAVs) from LLMs' activation space, enabling efficient attacks on well-aligned LLMs like LLaMA-2, achieving near 100% attack success rate as if LLMs are completely unaligned. This suggests that LLMs, even after thorough safety alignment, could still pose potential risks to society upon public release. To evaluate the harmfulness of outputs resulting with various attack methods, we propose a comprehensive evaluation method that reduces the potential inaccuracies of existing evaluations, and further validate that our method causes more harmful content. Additionally, we discover that the SCAVs show some transferability across different open-source LLMs.
Abstract:Recurrent neural networks and Transformers have recently dominated most applications in hyperspectral (HS) imaging, owing to their capability to capture long-range dependencies from spectrum sequences. However, despite the success of these sequential architectures, the non-ignorable inefficiency caused by either difficulty in parallelization or computationally prohibitive attention still hinders their practicality, especially for large-scale observation in remote sensing scenarios. To address this issue, we herein propose SpectralMamba -- a novel state space model incorporated efficient deep learning framework for HS image classification. SpectralMamba features the simplified but adequate modeling of HS data dynamics at two levels. First, in spatial-spectral space, a dynamical mask is learned by efficient convolutions to simultaneously encode spatial regularity and spectral peculiarity, thus attenuating the spectral variability and confusion in discriminative representation learning. Second, the merged spectrum can then be efficiently operated in the hidden state space with all parameters learned input-dependent, yielding selectively focused responses without reliance on redundant attention or imparallelizable recurrence. To explore the room for further computational downsizing, a piece-wise scanning mechanism is employed in-between, transferring approximately continuous spectrum into sequences with squeezed length while maintaining short- and long-term contextual profiles among hundreds of bands. Through extensive experiments on four benchmark HS datasets acquired by satellite-, aircraft-, and UAV-borne imagers, SpectralMamba surprisingly creates promising win-wins from both performance and efficiency perspectives.
Abstract:Self-supervised multi-frame methods have currently achieved promising results in depth estimation. However, these methods often suffer from mismatch problems due to the moving objects, which break the static assumption. Additionally, unfairness can occur when calculating photometric errors in high-freq or low-texture regions of the images. To address these issues, existing approaches use additional semantic priori black-box networks to separate moving objects and improve the model only at the loss level. Therefore, we propose FlowDepth, where a Dynamic Motion Flow Module (DMFM) decouples the optical flow by a mechanism-based approach and warps the dynamic regions thus solving the mismatch problem. For the unfairness of photometric errors caused by high-freq and low-texture regions, we use Depth-Cue-Aware Blur (DCABlur) and Cost-Volume sparsity loss respectively at the input and the loss level to solve the problem. Experimental results on the KITTI and Cityscapes datasets show that our method outperforms the state-of-the-art methods.
Abstract:This paper introduces RecAI, a practical toolkit designed to augment or even revolutionize recommender systems with the advanced capabilities of Large Language Models (LLMs). RecAI provides a suite of tools, including Recommender AI Agent, Recommendation-oriented Language Models, Knowledge Plugin, RecExplainer, and Evaluator, to facilitate the integration of LLMs into recommender systems from multifaceted perspectives. The new generation of recommender systems, empowered by LLMs, are expected to be more versatile, explainable, conversational, and controllable, paving the way for more intelligent and user-centric recommendation experiences. We hope the open-source of RecAI can help accelerate evolution of new advanced recommender systems. The source code of RecAI is available at \url{https://github.com/microsoft/RecAI}.
Abstract:Big models have achieved revolutionary breakthroughs in the field of AI, but they might also pose potential concerns. Addressing such concerns, alignment technologies were introduced to make these models conform to human preferences and values. Despite considerable advancements in the past year, various challenges lie in establishing the optimal alignment strategy, such as data cost and scalable oversight, and how to align remains an open question. In this survey paper, we comprehensively investigate value alignment approaches. We first unpack the historical context of alignment tracing back to the 1920s (where it comes from), then delve into the mathematical essence of alignment (what it is), shedding light on the inherent challenges. Following this foundation, we provide a detailed examination of existing alignment methods, which fall into three categories: Reinforcement Learning, Supervised Fine-Tuning, and In-context Learning, and demonstrate their intrinsic connections, strengths, and limitations, helping readers better understand this research area. In addition, two emerging topics, personal alignment, and multimodal alignment, are also discussed as novel frontiers in this field. Looking forward, we discuss potential alignment paradigms and how they could handle remaining challenges, prospecting where future alignment will go.
Abstract:This paper addresses the gap between general-purpose text embeddings and the specific demands of item retrieval tasks. We demonstrate the shortcomings of existing models in capturing the nuances necessary for zero-shot performance on item retrieval tasks. To overcome these limitations, we propose generate in-domain dataset from ten tasks tailored to unlocking models' representation ability for item retrieval. Our empirical studies demonstrate that fine-tuning embedding models on the dataset leads to remarkable improvements in a variety of retrieval tasks. We also illustrate the practical application of our refined model in a conversational setting, where it enhances the capabilities of LLM-based Recommender Agents like Chat-Rec. Our code is available at https://github.com/microsoft/RecAI.
Abstract:Current hyperspectral anomaly detection (HAD) benchmark datasets suffer from low resolution, simple background, and small size of the detection data. These factors also limit the performance of the well-known low-rank representation (LRR) models in terms of robustness on the separation of background and target features and the reliance on manual parameter selection. To this end, we build a new set of HAD benchmark datasets for improving the robustness of the HAD algorithm in complex scenarios, AIR-HAD for short. Accordingly, we propose a generalized and interpretable HAD network by deeply unfolding a dictionary-learnable LLR model, named LRR-Net$^+$, which is capable of spectrally decoupling the background structure and object properties in a more generalized fashion and eliminating the bias introduced by vital interference targets concurrently. In addition, LRR-Net$^+$ integrates the solution process of the Alternating Direction Method of Multipliers (ADMM) optimizer with the deep network, guiding its search process and imparting a level of interpretability to parameter optimization. Additionally, the integration of physical models with DL techniques eliminates the need for manual parameter tuning. The manually tuned parameters are seamlessly transformed into trainable parameters for deep neural networks, facilitating a more efficient and automated optimization process. Extensive experiments conducted on the AIR-HAD dataset show the superiority of our LRR-Net$^+$ in terms of detection performance and generalization ability, compared to top-performing rivals. Furthermore, the compilable codes and our AIR-HAD benchmark datasets in this paper will be made available freely and openly at \url{https://sites.google.com/view/danfeng-hong}.