Abstract:Hyperspectral images (HSIs) are frequently noisy and of low resolution due to the constraints of imaging devices. Recently launched satellites can concurrently acquire HSIs and panchromatic (PAN) images, enabling the restoration of HSIs to generate clean and high-resolution imagery through fusing PAN images for denoising and super-resolution. However, previous studies treated these two tasks as independent processes, resulting in accumulated errors. This paper introduces \textbf{H}yperspectral \textbf{I}mage Joint \textbf{Pand}enoising \textbf{a}nd Pan\textbf{s}harpening (Hipandas), a novel learning paradigm that reconstructs HRHS images from noisy low-resolution HSIs (LRHS) and high-resolution PAN images. The proposed zero-shot Hipandas framework consists of a guided denoising network, a guided super-resolution network, and a PAN reconstruction network, utilizing an HSI low-rank prior and a newly introduced detail-oriented low-rank prior. The interconnection of these networks complicates the training process, necessitating a two-stage training strategy to ensure effective training. Experimental results on both simulated and real-world datasets indicate that the proposed method surpasses state-of-the-art algorithms, yielding more accurate and visually pleasing HRHS images.
Abstract:Remote sensing image object detection (RSIOD) aims to identify and locate specific objects within satellite or aerial imagery. However, there is a scarcity of labeled data in current RSIOD datasets, which significantly limits the performance of current detection algorithms. Although existing techniques, e.g., data augmentation and semi-supervised learning, can mitigate this scarcity issue to some extent, they are heavily dependent on high-quality labeled data and perform worse in rare object classes. To address this issue, this paper proposes a layout-controllable diffusion generative model (i.e. AeroGen) tailored for RSIOD. To our knowledge, AeroGen is the first model to simultaneously support horizontal and rotated bounding box condition generation, thus enabling the generation of high-quality synthetic images that meet specific layout and object category requirements. Additionally, we propose an end-to-end data augmentation framework that integrates a diversity-conditioned generator and a filtering mechanism to enhance both the diversity and quality of generated data. Experimental results demonstrate that the synthetic data produced by our method are of high quality and diversity. Furthermore, the synthetic RSIOD data can significantly improve the detection performance of existing RSIOD models, i.e., the mAP metrics on DIOR, DIOR-R, and HRSC datasets are improved by 3.7%, 4.3%, and 2.43%, respectively. The code is available at https://github.com/Sonettoo/AeroGen.
Abstract:Recently, road graph extraction has garnered increasing attention due to its crucial role in autonomous driving, navigation, etc. However, accurately and efficiently extracting road graphs remains a persistent challenge, primarily due to the severe scarcity of labeled data. To address this limitation, we collect a global-scale satellite road graph extraction dataset, i.e. Global-Scale dataset. Specifically, the Global-Scale dataset is $\sim20 \times$ larger than the largest existing public road extraction dataset and spans over 13,800 $km^2$ globally. Additionally, we develop a novel road graph extraction model, i.e. SAM-Road++, which adopts a node-guided resampling method to alleviate the mismatch issue between training and inference in SAM-Road, a pioneering state-of-the-art road graph extraction model. Furthermore, we propose a simple yet effective ``extended-line'' strategy in SAM-Road++ to mitigate the occlusion issue on the road. Extensive experiments demonstrate the validity of the collected Global-Scale dataset and the proposed SAM-Road++ method, particularly highlighting its superior predictive power in unseen regions. The dataset and code are available at \url{https://github.com/earth-insights/samroadplus}.
Abstract:In recent years, histopathological whole slide image (WSI)- based survival analysis has attracted much attention in medical image analysis. In practice, WSIs usually come from different hospitals or laboratories, which can be seen as different domains, and thus may have significant differences in imaging equipment, processing procedures, and sample sources. These differences generally result in large gaps in distribution between different WSI domains, and thus the survival analysis models trained on one domain may fail to transfer to another. To address this issue, we propose a Dual-branch Encoder and Two-level Alignment (DETA) framework to explore both feature and category-level alignment between different WSI domains. Specifically, we first formulate the concerned problem as graph domain adaptation (GDA) by virtue the graph representation of WSIs. Then we construct a dual-branch graph encoder, including the message passing branch and the shortest path branch, to explicitly and implicitly extract semantic information from the graph-represented WSIs. To realize GDA, we propose a two-level alignment approach: at the category level, we develop a coupling technique by virtue of the dual-branch structure, leading to reduced divergence between the category distributions of the two domains; at the feature level, we introduce an adversarial perturbation strategy to better augment source domain feature, resulting in improved alignment in feature distribution. To the best of our knowledge, our work is the first attempt to alleviate the domain shift issue for WSI data analysis. Extensive experiments on four TCGA datasets have validated the effectiveness of our proposed DETA framework and demonstrated its superior performance in WSI-based survival analysis.
Abstract:Lane detection is a critical and challenging task in autonomous driving, particularly in real-world scenarios where traffic lanes can be slender, lengthy, and often obscured by other vehicles, complicating detection efforts. Existing anchor-based methods typically rely on prior lane anchors to extract features and subsequently refine the location and shape of lanes. While these methods achieve high performance, manually setting prior anchors is cumbersome, and ensuring sufficient coverage across diverse datasets often requires a large amount of dense anchors. Furthermore, the use of Non-Maximum Suppression (NMS) to eliminate redundant predictions complicates real-world deployment and may underperform in complex scenarios. In this paper, we propose Polar R-CNN, an end-to-end anchor-based method for lane detection. By incorporating both local and global polar coordinate systems, Polar R-CNN facilitates flexible anchor proposals and significantly reduces the number of anchors required without compromising performance.Additionally, we introduce a triplet head with heuristic structure that supports NMS-free paradigm, enhancing deployment efficiency and performance in scenarios with dense lanes.Our method achieves competitive results on five popular lane detection benchmarks--Tusimple, CULane,LLAMAS, CurveLanes, and DL-Rai--while maintaining a lightweight design and straightforward structure. Our source code is available at https://github.com/ShqWW/PolarRCNN.
Abstract:Remote sensing image change caption (RSICC) aims to provide natural language descriptions for bi-temporal remote sensing images. Since Change Caption (CC) task requires both spatial and temporal features, previous works follow an encoder-fusion-decoder architecture. They use an image encoder to extract spatial features and the fusion module to integrate spatial features and extract temporal features, which leads to increasingly complex manual design of the fusion module. In this paper, we introduce a novel video model-based paradigm without design of the fusion module and propose a Mask-enhanced Video model for Change Caption (MV-CC). Specifically, we use the off-the-shelf video encoder to simultaneously extract the temporal and spatial features of bi-temporal images. Furthermore, the types of changes in the CC are set based on specific task requirements, and to enable the model to better focus on the regions of interest, we employ masks obtained from the Change Detection (CD) method to explicitly guide the CC model. Experimental results demonstrate that our proposed method can obtain better performance compared with other state-of-the-art RSICC methods. The code is available at https://github.com/liuruixun/MV-CC.
Abstract:Graph Contrastive Learning (GCL) excels at managing noise and fluctuations in input data, making it popular in various fields (e.g., social networks, and knowledge graphs). Our study finds that the difference in high-frequency information between augmented graphs is greater than that in low-frequency information. However, most existing GCL methods focus mainly on the time domain (low-frequency information) for node feature representations and cannot make good use of high-frequency information to speed up model convergence. Furthermore, existing GCL paradigms optimize graph embedding representations by pulling the distance between positive sample pairs closer and pushing the distance between positive and negative sample pairs farther away, but our theoretical analysis shows that graph contrastive learning benefits from pushing negative pairs farther away rather than pulling positive pairs closer. To solve the above-mentioned problems, we propose a novel spectral GCL framework without positive samples, named SpeGCL. Specifically, to solve the problem that existing GCL methods cannot utilize high-frequency information, SpeGCL uses a Fourier transform to extract high-frequency and low-frequency information of node features, and constructs a contrastive learning mechanism in a Fourier space to obtain better node feature representation. Furthermore, SpeGCL relies entirely on negative samples to refine the graph embedding. We also provide a theoretical justification for the efficacy of using only negative samples in SpeGCL. Extensive experiments on un-supervised learning, transfer learning, and semi-supervised learning have validated the superiority of our SpeGCL framework over the state-of-the-art GCL methods.
Abstract:Despite previous works typically targeting isolated degradation types, recent research has increasingly focused on addressing composite degradations which involve a complex interplay of multiple different isolated degradations. Recognizing the challenges posed by the exponential number of possible degradation combinations, we propose Universal Image Restoration (UIR), a new task setting that requires models to be trained on a set of degradation bases and then remove any degradation that these bases can potentially compose in a zero-shot manner. Inspired by the Chain-of-Thought which prompts LLMs to address problems step-by-step, we propose the Chain-of-Restoration (CoR), which instructs models to step-by-step remove unknown composite degradations. By integrating a simple Degradation Discriminator into pre-trained multi-task models, CoR facilitates the process where models remove one degradation basis per step, continuing this process until the image is fully restored from the unknown composite degradation. Extensive experiments show that CoR significantly improves model performance in removing composite degradations, achieving results comparable to or surpassing those of State-of-The-Art (SoTA) methods trained on all degradations. The code will be released at https://github.com/toummHus/Chain-of-Restoration.
Abstract:Remote sensing image plays an irreplaceable role in fields such as agriculture, water resources, military, and disaster relief. Pixel-level interpretation is a critical aspect of remote sensing image applications; however, a prevalent limitation remains the need for extensive manual annotation. For this, we try to introduce open-vocabulary semantic segmentation (OVSS) into the remote sensing context. However, due to the sensitivity of remote sensing images to low-resolution features, distorted target shapes and ill-fitting boundaries are exhibited in the prediction mask. To tackle this issue, we propose a simple and general upsampler, SimFeatUp, to restore lost spatial information in deep features in a training-free style. Further, based on the observation of the abnormal response of local patch tokens to [CLS] token in CLIP, we propose to execute a straightforward subtraction operation to alleviate the global bias in patch tokens. Extensive experiments are conducted on 17 remote sensing datasets spanning semantic segmentation, building extraction, road detection, and flood detection tasks. Our method achieves an average of 5.8%, 8.2%, 4%, and 15.3% improvement over state-of-the-art methods on 4 tasks. All codes are released. \url{https://earth-insights.github.io/SegEarth-OV}
Abstract:Image restoration involves recovering a high-quality clean image from its degraded version, which is a fundamental task in computer vision. Recent progress in image restoration has demonstrated the effectiveness of learning models capable of addressing various degradations simultaneously, i.e., the All-in-One image restoration models. However, these existing methods typically utilize the same parameters facing images with different degradation types, which causes the model to be forced to trade off between degradation types, therefore impair the total performance. To solve this problem, we propose HAIR, a Hypernetworks-based plug-in-and-play method that dynamically generated parameters for the corresponding networks based on the contents of input images. HAIR consists of 2 main components: Classifier (Cl) and Hyper Selecting Net (HSN). To be more specific, the Classifier is a simple image classification network which is used to generate a Global Information Vector (GIV) that contains the degradation information of the input image; And the HSNs can be seen as a simple Fully-connected Neural Network that receive the GIV and output parameters for the corresponding modules. Extensive experiments shows that incorporating HAIR into the architectures can significantly improve the performance of different models on image restoration tasks at a low cost, \textbf{although HAIR only generate parameters and haven't change these models' logical structures at all.} With incorporating HAIR into the popular architecture Restormer, our method obtains superior or at least comparable performance to current state-of-the-art methods on a range of image restoration tasks. \href{https://github.com/toummHus/HAIR}{\textcolor{blue}{$\underline{\textbf{Code and pre-trained checkpoints are available here.}}$}}