Abstract:Remote sensing image object detection (RSIOD) aims to identify and locate specific objects within satellite or aerial imagery. However, there is a scarcity of labeled data in current RSIOD datasets, which significantly limits the performance of current detection algorithms. Although existing techniques, e.g., data augmentation and semi-supervised learning, can mitigate this scarcity issue to some extent, they are heavily dependent on high-quality labeled data and perform worse in rare object classes. To address this issue, this paper proposes a layout-controllable diffusion generative model (i.e. AeroGen) tailored for RSIOD. To our knowledge, AeroGen is the first model to simultaneously support horizontal and rotated bounding box condition generation, thus enabling the generation of high-quality synthetic images that meet specific layout and object category requirements. Additionally, we propose an end-to-end data augmentation framework that integrates a diversity-conditioned generator and a filtering mechanism to enhance both the diversity and quality of generated data. Experimental results demonstrate that the synthetic data produced by our method are of high quality and diversity. Furthermore, the synthetic RSIOD data can significantly improve the detection performance of existing RSIOD models, i.e., the mAP metrics on DIOR, DIOR-R, and HRSC datasets are improved by 3.7%, 4.3%, and 2.43%, respectively. The code is available at https://github.com/Sonettoo/AeroGen.
Abstract:Efficient acquisition of real-world embodied data has been increasingly critical. However, large-scale demonstrations captured by remote operation tend to take extremely high costs and fail to scale up the data size in an efficient manner. Sampling the episodes under a simulated environment is a promising way for large-scale collection while existing simulators fail to high-fidelity modeling on texture and physics. To address these limitations, we introduce the RoboGSim, a real2sim2real robotic simulator, powered by 3D Gaussian Splatting and the physics engine. RoboGSim mainly includes four parts: Gaussian Reconstructor, Digital Twins Builder, Scene Composer, and Interactive Engine. It can synthesize the simulated data with novel views, objects, trajectories, and scenes. RoboGSim also provides an online, reproducible, and safe evaluation for different manipulation policies. The real2sim and sim2real transfer experiments show a high consistency in the texture and physics. Moreover, the effectiveness of synthetic data is validated under the real-world manipulated tasks. We hope RoboGSim serves as a closed-loop simulator for fair comparison on policy learning. More information can be found on our project page https://robogsim.github.io/ .
Abstract:Generative Adversarial Networks (GANs) have surfaced as a revolutionary element within the domain of low-dose computed tomography (LDCT) imaging, providing an advanced resolution to the enduring issue of reconciling radiation exposure with image quality. This comprehensive review synthesizes the rapid advancements in GAN-based LDCT denoising techniques, examining the evolution from foundational architectures to state-of-the-art models incorporating advanced features such as anatomical priors, perceptual loss functions, and innovative regularization strategies. We critically analyze various GAN architectures, including conditional GANs (cGANs), CycleGANs, and Super-Resolution GANs (SRGANs), elucidating their unique strengths and limitations in the context of LDCT denoising. The evaluation provides both qualitative and quantitative results related to the improvements in performance in benchmark and clinical datasets with metrics such as PSNR, SSIM, and LPIPS. After highlighting the positive results, we discuss some of the challenges preventing a wider clinical use, including the interpretability of the images generated by GANs, synthetic artifacts, and the need for clinically relevant metrics. The review concludes by highlighting the essential significance of GAN-based methodologies in the progression of precision medicine via tailored LDCT denoising models, underlining the transformative possibilities presented by artificial intelligence within contemporary radiological practice.
Abstract:Recent advances in Generative Artificial Intelligence have fueled numerous applications, particularly those involving Generative Adversarial Networks (GANs), which are essential for synthesizing realistic photos and videos. However, efficiently training GANs remains a critical challenge due to their computationally intensive and numerically unstable nature. Existing methods often require days or even weeks for training, posing significant resource and time constraints. In this work, we introduce ParaGAN, a scalable distributed GAN training framework that leverages asynchronous training and an asymmetric optimization policy to accelerate GAN training. ParaGAN employs a congestion-aware data pipeline and hardware-aware layout transformation to enhance accelerator utilization, resulting in over 30% improvements in throughput. With ParaGAN, we reduce the training time of BigGAN from 15 days to 14 hours while achieving 91% scaling efficiency. Additionally, ParaGAN enables unprecedented high-resolution image generation using BigGAN.
Abstract:Large language models (LLMs) show remarkable abilities with instruction tuning. However, they fail to achieve ideal tasks when lacking high-quality instruction tuning data on target tasks. Multi-Aspect Controllable Text Generation (MCTG) is a representative task for this dilemma, where aspect datasets are usually biased and correlated. Existing work exploits additional model structures and strategies for solutions, limiting adaptability to LLMs. To activate MCTG ability of LLMs, we propose a lightweight MCTG pipeline based on data augmentation. We analyze bias and correlations in traditional datasets, and address these concerns with augmented control attributes and sentences. Augmented datasets are feasible for instruction tuning. In our experiments, LLMs perform better in MCTG after data augmentation, with a 20% accuracy rise and less aspect correlations.
Abstract:Deep learning models are increasingly deployed on resource-constrained edge devices for real-time data analytics. In recent years, Vision Transformer models and their variants have demonstrated outstanding performance across various computer vision tasks. However, their high computational demands and inference latency pose significant challenges for model deployment on resource-constraint edge devices. To address this issue, we propose a novel Vision Transformer splitting framework, ED-ViT, designed to execute complex models across multiple edge devices efficiently. Specifically, we partition Vision Transformer models into several sub-models, where each sub-model is tailored to handle a specific subset of data classes. To further minimize computation overhead and inference latency, we introduce a class-wise pruning technique that reduces the size of each sub-model. We conduct extensive experiments on five datasets with three model structures, demonstrating that our approach significantly reduces inference latency on edge devices and achieves a model size reduction of up to 28.9 times and 34.1 times, respectively, while maintaining test accuracy comparable to the original Vision Transformer. Additionally, we compare ED-ViT with two state-of-the-art methods that deploy CNN and SNN models on edge devices, evaluating accuracy, inference time, and overall model size. Our comprehensive evaluation underscores the effectiveness of the proposed ED-ViT framework.
Abstract:In the field of industrial inspection, Multimodal Large Language Models (MLLMs) have a high potential to renew the paradigms in practical applications due to their robust language capabilities and generalization abilities. However, despite their impressive problem-solving skills in many domains, MLLMs' ability in industrial anomaly detection has not been systematically studied. To bridge this gap, we present MMAD, the first-ever full-spectrum MLLMs benchmark in industrial Anomaly Detection. We defined seven key subtasks of MLLMs in industrial inspection and designed a novel pipeline to generate the MMAD dataset with 39,672 questions for 8,366 industrial images. With MMAD, we have conducted a comprehensive, quantitative evaluation of various state-of-the-art MLLMs. The commercial models performed the best, with the average accuracy of GPT-4o models reaching 74.9%. However, this result falls far short of industrial requirements. Our analysis reveals that current MLLMs still have significant room for improvement in answering questions related to industrial anomalies and defects. We further explore two training-free performance enhancement strategies to help models improve in industrial scenarios, highlighting their promising potential for future research.
Abstract:Controllable generation, which enables fine-grained control over generated outputs, has emerged as a critical focus in visual generative models. Currently, there are two primary technical approaches in visual generation: diffusion models and autoregressive models. Diffusion models, as exemplified by ControlNet and T2I-Adapter, offer advanced control mechanisms, whereas autoregressive models, despite showcasing impressive generative quality and scalability, remain underexplored in terms of controllability and flexibility. In this study, we introduce Controllable AutoRegressive Modeling (CAR), a novel, plug-and-play framework that integrates conditional control into multi-scale latent variable modeling, enabling efficient control generation within a pre-trained visual autoregressive model. CAR progressively refines and captures control representations, which are injected into each autoregressive step of the pre-trained model to guide the generation process. Our approach demonstrates excellent controllability across various types of conditions and delivers higher image quality compared to previous methods. Additionally, CAR achieves robust generalization with significantly fewer training resources compared to those required for pre-training the model. To the best of our knowledge, we are the first to propose a control framework for pre-trained autoregressive visual generation models.
Abstract:Ensuring safety is a key aspect in sequential decision making problems, such as robotics or process control. The complexity of the underlying systems often makes finding the optimal decision challenging, especially when the safety-critical system is time-varying. Overcoming the problem of optimizing an unknown time-varying reward subject to unknown time-varying safety constraints, we propose TVSafeOpt, a new algorithm built on Bayesian optimization with a spatio-temporal kernel. The algorithm is capable of safely tracking a time-varying safe region without the need for explicit change detection. Optimality guarantees are also provided for the algorithm when the optimization problem becomes stationary. We show that TVSafeOpt compares favorably against SafeOpt on synthetic data, both regarding safety and optimality. Evaluation on a realistic case study with gas compressors confirms that TVSafeOpt ensures safety when solving time-varying optimization problems with unknown reward and safety functions.
Abstract:Categorization, a core cognitive ability in humans that organizes objects based on common features, is essential to cognitive science as well as computer vision. To evaluate the categorization ability of visual AI models, various proxy tasks on recognition from datasets to open world scenarios have been proposed. Recent development of Large Multimodal Models (LMMs) has demonstrated impressive results in high-level visual tasks, such as visual question answering, video temporal reasoning, etc., utilizing the advanced architectures and large-scale multimodal instruction tuning. Previous researchers have developed holistic benchmarks to measure the high-level visual capability of LMMs, but there is still a lack of pure and in-depth quantitative evaluation of the most fundamental categorization ability. According to the research on human cognitive process, categorization can be seen as including two parts: category learning and category use. Inspired by this, we propose a novel, challenging, and efficient benchmark based on composite blocks, called ComBo, which provides a disentangled evaluation framework and covers the entire categorization process from learning to use. By analyzing the results of multiple evaluation tasks, we find that although LMMs exhibit acceptable generalization ability in learning new categories, there are still gaps compared to humans in many ways, such as fine-grained perception of spatial relationship and abstract category understanding. Through the study of categorization, we can provide inspiration for the further development of LMMs in terms of interpretability and generalization.