Abstract:Multi-Span Question Answering (MSQA) requires models to extract one or multiple answer spans from a given context to answer a question. Prior work mainly focuses on designing specific methods or applying heuristic strategies to encourage models to predict more correct predictions. However, these models are trained on gold answers and fail to consider the incorrect predictions. Through a statistical analysis, we observe that models with stronger abilities do not predict less incorrect predictions compared with other models. In this work, we propose Answering-Classifying-Correcting (ACC) framework, which employs a post-processing strategy to handle incorrect predictions. Specifically, the ACC framework first introduces a classifier to classify the predictions into three types and exclude "wrong predictions", then introduces a corrector to modify "partially correct predictions". Experiments on several MSQA datasets show that ACC framework significantly improves the Exact Match (EM) scores, and further analysis demostrates that ACC framework efficiently reduces the number of incorrect predictions, improving the quality of predictions.
Abstract:While the capabilities of autonomous driving have advanced rapidly, merging into dense traffic remains a significant challenge, many motion planning methods for this scenario have been proposed but it is hard to evaluate them. Most existing closed-loop simulators rely on rule-based controls for other vehicles, which results in a lack of diversity and randomness, thus failing to accurately assess the motion planning capabilities in highly interactive scenarios. Moreover, traditional evaluation metrics are insufficient for comprehensively evaluating the performance of merging in dense traffic. In response, we proposed a closed-loop evaluation benchmark for assessing motion planning capabilities in merging scenarios. Our approach involves other vehicles trained in large scale datasets with micro-behavioral characteristics that significantly enhance the complexity and diversity. Additionally, we have restructured the evaluation mechanism by leveraging large language models to assess each autonomous vehicle merging onto the main road. Extensive experiments have demonstrated the advanced nature of this evaluation benchmark. Through this benchmark, we have obtained an evaluation of existing methods and identified common issues. The environment and vehicle motion planning models we have designed can be accessed at https://anonymous.4open.science/r/Bench4Merge-EB5D
Abstract:Large language models (LLMs) show remarkable abilities with instruction tuning. However, they fail to achieve ideal tasks when lacking high-quality instruction tuning data on target tasks. Multi-Aspect Controllable Text Generation (MCTG) is a representative task for this dilemma, where aspect datasets are usually biased and correlated. Existing work exploits additional model structures and strategies for solutions, limiting adaptability to LLMs. To activate MCTG ability of LLMs, we propose a lightweight MCTG pipeline based on data augmentation. We analyze bias and correlations in traditional datasets, and address these concerns with augmented control attributes and sentences. Augmented datasets are feasible for instruction tuning. In our experiments, LLMs perform better in MCTG after data augmentation, with a 20% accuracy rise and less aspect correlations.
Abstract:ICD(International Classification of Diseases) coding involves assigning ICD codes to patients visit based on their medical notes. Considering ICD coding as a multi-label text classification task, researchers have developed sophisticated methods. Despite progress, these models often suffer from label imbalance and may develop spurious correlations with demographic factors. Additionally, while human coders assign ICD codes, the inclusion of irrelevant information from unrelated experts introduces biases. To combat these issues, we propose a novel method to mitigate Demographic and Expert biases in ICD coding through Causal Inference (DECI). We provide a novel causality-based interpretation in ICD Coding that models make predictions by three distinct pathways. And based counterfactual reasoning, DECI mitigate demographic and expert biases. Experimental results show that DECI outperforms state-of-the-art models, offering a significant advancement in accurate and unbiased ICD coding.
Abstract:Automatic Emergency Braking (AEB) systems are a crucial component in ensuring the safety of passengers in autonomous vehicles. Conventional AEB systems primarily rely on closed-set perception modules to recognize traffic conditions and assess collision risks. To enhance the adaptability of AEB systems in open scenarios, we propose Dual-AEB, a system combines an advanced multimodal large language model (MLLM) for comprehensive scene understanding and a conventional rule-based rapid AEB to ensure quick response times. To the best of our knowledge, Dual-AEB is the first method to incorporate MLLMs within AEB systems. Through extensive experimentation, we have validated the effectiveness of our method. The source code will be available at https://github.com/ChipsICU/Dual-AEB.
Abstract:Much work on the cultural awareness of large language models (LLMs) focuses on the models' sensitivity to geo-cultural diversity. However, in addition to cross-cultural differences, there also exists common ground across cultures. For instance, a bridal veil in the United States plays a similar cultural-relevant role as a honggaitou in China. In this study, we introduce a benchmark dataset CUNIT for evaluating decoder-only LLMs in understanding the cultural unity of concepts. Specifically, CUNIT consists of 1,425 evaluation examples building upon 285 traditional cultural-specific concepts across 10 countries. Based on a systematic manual annotation of cultural-relevant features per concept, we calculate the cultural association between any pair of cross-cultural concepts. Built upon this dataset, we design a contrastive matching task to evaluate the LLMs' capability to identify highly associated cross-cultural concept pairs. We evaluate 3 strong LLMs, using 3 popular prompting strategies, under the settings of either giving all extracted concept features or no features at all on CUNIT Interestingly, we find that cultural associations across countries regarding clothing concepts largely differ from food. Our analysis shows that LLMs are still limited to capturing cross-cultural associations between concepts compared to humans. Moreover, geo-cultural proximity shows a weak influence on model performance in capturing cross-cultural associations.
Abstract:ICD(International Classification of Diseases) coding involves assigning ICD codes to patients visit based on their medical notes. ICD coding is a challenging multilabel text classification problem due to noisy medical document inputs. Recent advancements in automated ICD coding have enhanced performance by integrating additional data and knowledge bases with the encoding of medical notes and codes. However, most of them ignore the code hierarchy, leading to improper code assignments. To address these problems, we propose a novel framework based on associated and hierarchical code description distillation (AHDD) for better code representation learning and avoidance of improper code assignment.we utilize the code description and the hierarchical structure inherent to the ICD codes. Therefore, in this paper, we leverage the code description and the hierarchical structure inherent to the ICD codes. The code description is also applied to aware the attention layer and output layer. Experimental results on the benchmark dataset show the superiority of the proposed framework over several state-of-the-art baselines.
Abstract:Gastric cancer is the third leading cause of cancer-related mortality worldwide, but no guideline-recommended screening test exists. Existing methods can be invasive, expensive, and lack sensitivity to identify early-stage gastric cancer. In this study, we explore the feasibility of using a deep learning approach on non-contrast CT scans for gastric cancer detection. We propose a novel cluster-induced Mask Transformer that jointly segments the tumor and classifies abnormality in a multi-task manner. Our model incorporates learnable clusters that encode the texture and shape prototypes of gastric cancer, utilizing self- and cross-attention to interact with convolutional features. In our experiments, the proposed method achieves a sensitivity of 85.0% and specificity of 92.6% for detecting gastric tumors on a hold-out test set consisting of 100 patients with cancer and 148 normal. In comparison, two radiologists have an average sensitivity of 73.5% and specificity of 84.3%. We also obtain a specificity of 97.7% on an external test set with 903 normal cases. Our approach performs comparably to established state-of-the-art gastric cancer screening tools like blood testing and endoscopy, while also being more sensitive in detecting early-stage cancer. This demonstrates the potential of our approach as a novel, non-invasive, low-cost, and accurate method for opportunistic gastric cancer screening.
Abstract:The task of visual dialog requires a multimodal chatbot to answer sequential questions from humans about image content. Prior work performs the standard likelihood training for answer generation on the positive instances (involving correct answers). However, the likelihood objective often leads to frequent and dull outputs and fails to exploit the useful knowledge from negative instances (involving incorrect answers). In this paper, we propose a Unified Multimodal Model with UnLikelihood Training, named UniMM-UL, to tackle this problem. First, to improve visual dialog understanding and generation by multi-task learning, our model extends ViLBERT from only supporting answer discrimination to holding both answer discrimination and answer generation seamlessly by different attention masks. Specifically, in order to make the original discriminative model compatible with answer generation, we design novel generative attention masks to implement the autoregressive Masked Language Modeling (autoregressive MLM) task. And to attenuate the adverse effects of the likelihood objective, we exploit unlikelihood training on negative instances to make the model less likely to generate incorrect answers. Then, to utilize dense annotations, we adopt different fine-tuning methods for both generating and discriminating answers, rather than just for discriminating answers as in the prior work. Finally, on the VisDial dataset, our model achieves the best generative results (69.23 NDCG score). And our model also yields comparable discriminative results with the state-of-the-art in both single-model and ensemble settings (75.92 and 76.17 NDCG scores).
Abstract:This paper presents a novel open-domain dialogue generation model emphasizing the differentiation of speakers in multi-turn conversations. Differing from prior work that solely relies on the content of conversation history to generate a response, we argue that capturing relative social relations among utterances (i.e., generated by either the same speaker or different persons) benefits the machine capturing fine-grained context information from a conversation history to improve context coherence in the generated response. Given that, we propose a speaker-aware Parallel Hierarchical Attentive Encoder-Decoder (PHAED) model that aims to model each utterance with the awareness of its speaker and contextual associations with the same speaker's previous messages. Specifically, in a conversation involving two speakers, we regard the utterances from one speaker as responses and those from the other as queries. After understanding queries via our encoder with inner-query and inter-query encodings, our decoder reuses the hidden states of previously generated responses, instead of reconstructing these by the encoder, to generate a new response. Our empirical results show that PHAED outperforms the state-of-the-art in both automatic and human evaluations. Furthermore, our ablation study shows that dialogue models with speaker tokens can generally decrease the possibility of generating non-coherent responses regarding the conversation context.