Abstract:Wind power forecasting (WPF), as a significant research topic within renewable energy, plays a crucial role in enhancing the security, stability, and economic operation of power grids. However, due to the high stochasticity of meteorological factors (e.g., wind speed) and significant fluctuations in wind power output, mid-term wind power forecasting faces a dual challenge of maintaining high accuracy and computational efficiency. To address these issues, this paper proposes an efficient and lightweight mid-term wind power forecasting model, termed Fast-Powerformer. The proposed model is built upon the Reformer architecture, incorporating structural enhancements such as a lightweight Long Short-Term Memory (LSTM) embedding module, an input transposition mechanism, and a Frequency Enhanced Channel Attention Mechanism (FECAM). These improvements enable the model to strengthen temporal feature extraction, optimize dependency modeling across variables, significantly reduce computational complexity, and enhance sensitivity to periodic patterns and dominant frequency components. Experimental results conducted on multiple real-world wind farm datasets demonstrate that the proposed Fast-Powerformer achieves superior prediction accuracy and operational efficiency compared to mainstream forecasting approaches. Furthermore, the model exhibits fast inference speed and low memory consumption, highlighting its considerable practical value for real-world deployment scenarios.
Abstract:Multi-object tracking (MOT) aims at estimating bounding boxes and identities of objects in videos. Most methods can be roughly classified as tracking-by-detection and joint-detection-association paradigms. Although the latter has elicited more attention and demonstrates comparable performance relative than the former, we claim that the tracking-by-detection paradigm is still the optimal solution in terms of tracking accuracy,such as ByteTrack,which achieves 80.3 MOTA, 77.3 IDF1 and 63.1 HOTA on the test set of MOT17 with 30 FPS running speed on a single V100 GPU.However, under complex perspectives such as vehicle and UAV acceleration, the performance of such a tracker using uniform Kalman filter will be greatly affected, resulting in tracking loss.In this paper, we propose a variable speed Kalman filter algorithm based on environmental feedback and improve the matching process, which can greatly improve the tracking effect in complex variable speed scenes while maintaining high tracking accuracy in relatively static scenes. Eventually, higher MOTA and IDF1 results can be achieved on MOT17 test set than ByteTrack