Abstract:Real-world enterprise text-to-SQL workflows often involve complex cloud or local data across various database systems, multiple SQL queries in various dialects, and diverse operations from data transformation to analytics. We introduce Spider 2.0, an evaluation framework comprising 632 real-world text-to-SQL workflow problems derived from enterprise-level database use cases. The databases in Spider 2.0 are sourced from real data applications, often containing over 1,000 columns and stored in local or cloud database systems such as BigQuery and Snowflake. We show that solving problems in Spider 2.0 frequently requires understanding and searching through database metadata, dialect documentation, and even project-level codebases. This challenge calls for models to interact with complex SQL workflow environments, process extremely long contexts, perform intricate reasoning, and generate multiple SQL queries with diverse operations, often exceeding 100 lines, which goes far beyond traditional text-to-SQL challenges. Our evaluations indicate that based on o1-preview, our code agent framework successfully solves only 17.0% of the tasks, compared with 91.2% on Spider 1.0 and 73.0% on BIRD. Our results on Spider 2.0 show that while language models have demonstrated remarkable performance in code generation -- especially in prior text-to-SQL benchmarks -- they require significant improvement in order to achieve adequate performance for real-world enterprise usage. Progress on Spider 2.0 represents crucial steps towards developing intelligent, autonomous, code agents for real-world enterprise settings. Our code, baseline models, and data are available at https://spider2-sql.github.io.
Abstract:Autonomous agents powered by large vision and language models (VLM) have demonstrated significant potential in completing daily computer tasks, such as browsing the web to book travel and operating desktop software, which requires agents to understand these interfaces. Despite such visual inputs becoming more integrated into agentic applications, what types of risks and attacks exist around them still remain unclear. In this work, we demonstrate that VLM agents can be easily attacked by a set of carefully designed adversarial pop-ups, which human users would typically recognize and ignore. This distraction leads agents to click these pop-ups instead of performing the tasks as usual. Integrating these pop-ups into existing agent testing environments like OSWorld and VisualWebArena leads to an attack success rate (the frequency of the agent clicking the pop-ups) of 86% on average and decreases the task success rate by 47%. Basic defense techniques such as asking the agent to ignore pop-ups or including an advertisement notice, are ineffective against the attack.
Abstract:Index tuning is crucial for optimizing database performance by selecting optimal indexes based on workload. The key to this process lies in an accurate and efficient benefit estimator. Traditional methods relying on what-if tools often suffer from inefficiency and inaccuracy. In contrast, learning-based models provide a promising alternative but face challenges such as instability, lack of interpretability, and complex management. To overcome these limitations, we adopt a novel approach: quantifying the uncertainty in learning-based models' results, thereby combining the strengths of both traditional and learning-based methods for reliable index tuning. We propose Beauty, the first uncertainty-aware framework that enhances learning-based models with uncertainty quantification and uses what-if tools as a complementary mechanism to improve reliability and reduce management complexity. Specifically, we introduce a novel method that combines AutoEncoder and Monte Carlo Dropout to jointly quantify uncertainty, tailored to the characteristics of benefit estimation tasks. In experiments involving sixteen models, our approach outperformed existing uncertainty quantification methods in the majority of cases. We also conducted index tuning tests on six datasets. By applying the Beauty framework, we eliminated worst-case scenarios and more than tripled the occurrence of best-case scenarios.
Abstract:Light field microscopy (LFM) has been widely utilized in various fields for its capability to efficiently capture high-resolution 3D scenes. Despite the rapid advancements in neural representations, there are few methods specifically tailored for microscopic scenes. Existing approaches often do not adequately address issues such as the loss of high-frequency information due to defocus and sample aberration, resulting in suboptimal performance. In addition, existing methods, including RLD, INR, and supervised U-Net, face challenges such as sensitivity to initial estimates, reliance on extensive labeled data, and low computational efficiency, all of which significantly diminish the practicality in complex biological scenarios. This paper introduces PNR (Physics-informed Neural Representation), a method for high-resolution LFM reconstruction that significantly enhances performance. Our method incorporates an unsupervised and explicit feature representation approach, resulting in a 6.1 dB improvement in PSNR than RLD. Additionally, our method employs a frequency-based training loss, enabling better recovery of high-frequency details, which leads to a reduction in LPIPS by at least half compared to SOTA methods (1.762 V.S. 3.646 of DINER). Moreover, PNR integrates a physics-informed aberration correction strategy that optimizes Zernike polynomial parameters during optimization, thereby reducing the information loss caused by aberrations and improving spatial resolution. These advancements make PNR a promising solution for long-term high-resolution biological imaging applications. Our code and dataset will be made publicly available.
Abstract:Detailed and photorealistic 3D human modeling is essential for various applications and has seen tremendous progress. However, full-body reconstruction from a monocular RGB image remains challenging due to the ill-posed nature of the problem and sophisticated clothing topology with self-occlusions. In this paper, we propose PSHuman, a novel framework that explicitly reconstructs human meshes utilizing priors from the multiview diffusion model. It is found that directly applying multiview diffusion on single-view human images leads to severe geometric distortions, especially on generated faces. To address it, we propose a cross-scale diffusion that models the joint probability distribution of global full-body shape and local facial characteristics, enabling detailed and identity-preserved novel-view generation without any geometric distortion. Moreover, to enhance cross-view body shape consistency of varied human poses, we condition the generative model on parametric models like SMPL-X, which provide body priors and prevent unnatural views inconsistent with human anatomy. Leveraging the generated multi-view normal and color images, we present SMPLX-initialized explicit human carving to recover realistic textured human meshes efficiently. Extensive experimental results and quantitative evaluations on CAPE and THuman2.1 datasets demonstrate PSHumans superiority in geometry details, texture fidelity, and generalization capability.
Abstract:Neural implicit representation, the parameterization of distance function as a coordinate neural field, has emerged as a promising lead in tackling surface reconstruction from unoriented point clouds. To enforce consistent orientation, existing methods focus on regularizing the gradient of the distance function, such as constraining it to be of the unit norm, minimizing its divergence, or aligning it with the eigenvector of Hessian that corresponds to zero eigenvalue. However, under the presence of large scanning noise, they tend to either overfit the noise input or produce an excessively smooth reconstruction. In this work, we propose to guide the surface reconstruction under a new variant of neural field, the octahedral field, leveraging the spherical harmonics representation of octahedral frames originated in the hexahedral meshing. Such field automatically snaps to geometry features when constrained to be smooth, and naturally preserves sharp angles when interpolated over creases. By simultaneously fitting and smoothing the octahedral field alongside the implicit geometry, it behaves analogously to bilateral filtering, resulting in smooth reconstruction while preserving sharp edges. Despite being operated purely pointwise, our method outperforms various traditional and neural approaches across extensive experiments, and is very competitive with methods that require normal and data priors. Our full implementation is available at: https://github.com/Ankbzpx/frame-field.
Abstract:Due to the increasing complexity of chip design, existing placement methods still have many shortcomings in dealing with macro cells coverage and optimization efficiency. Aiming at the problems of layout overlap, inferior performance, and low optimization efficiency in existing chip design methods, this paper proposes an end-to-end placement method, SRLPlacer, based on reinforcement learning. First, the placement problem is transformed into a Markov decision process by establishing the coupling relationship graph model between macro cells to learn the strategy for optimizing layouts. Secondly, the whole placement process is optimized after integrating the standard cell layout. By assessing on the public benchmark ISPD2005, the proposed SRLPlacer can effectively solve the overlap problem between macro cells while considering routing congestion and shortening the total wire length to ensure routability.
Abstract:Deep learning, especially convolutional neural networks (CNNs) and Transformer architectures, have become the focus of extensive research in medical image segmentation, achieving impressive results. However, CNNs come with inductive biases that limit their effectiveness in more complex, varied segmentation scenarios. Conversely, while Transformer-based methods excel at capturing global and long-range semantic details, they suffer from high computational demands. In this study, we propose CSWin-UNet, a novel U-shaped segmentation method that incorporates the CSWin self-attention mechanism into the UNet to facilitate horizontal and vertical stripes self-attention. This method significantly enhances both computational efficiency and receptive field interactions. Additionally, our innovative decoder utilizes a content-aware reassembly operator that strategically reassembles features, guided by predicted kernels, for precise image resolution restoration. Our extensive empirical evaluations on diverse datasets, including synapse multi-organ CT, cardiac MRI, and skin lesions, demonstrate that CSWin-UNet maintains low model complexity while delivering high segmentation accuracy.
Abstract:In recent studies on domain adaptation, significant emphasis has been placed on the advancement of learning shared knowledge from a source domain to a target domain. Recently, the large vision-language pre-trained model, i.e., CLIP has shown strong ability on zero-shot recognition, and parameter efficient tuning can further improve its performance on specific tasks. This work demonstrates that a simple domain prior boosts CLIP's zero-shot recognition in a specific domain. Besides, CLIP's adaptation relies less on source domain data due to its diverse pre-training dataset. Furthermore, we create a benchmark for zero-shot adaptation and pseudo-labeling based self-training with CLIP. Last but not least, we propose to improve the task generalization ability of CLIP from multiple unlabeled domains, which is a more practical and unique scenario. We believe our findings motivate a rethinking of domain adaptation benchmarks and the associated role of related algorithms in the era of CLIP.
Abstract:Existing retrieval benchmarks primarily consist of information-seeking queries (e.g., aggregated questions from search engines) where keyword or semantic-based retrieval is usually sufficient. However, many complex real-world queries require in-depth reasoning to identify relevant documents that go beyond surface form matching. For example, finding documentation for a coding question requires understanding the logic and syntax of the functions involved. To better benchmark retrieval on such challenging queries, we introduce BRIGHT, the first text retrieval benchmark that requires intensive reasoning to retrieve relevant documents. BRIGHT is constructed from the 1,398 real-world queries collected from diverse domains (such as economics, psychology, robotics, software engineering, earth sciences, etc.), sourced from naturally occurring or carefully curated human data. Extensive evaluation reveals that even state-of-the-art retrieval models perform poorly on BRIGHT. The leading model on the MTEB leaderboard [38 ], which achieves a score of 59.0 nDCG@10,2 produces a score of nDCG@10 of 18.0 on BRIGHT. We further demonstrate that augmenting queries with Chain-of-Thought reasoning generated by large language models (LLMs) improves performance by up to 12.2 points. Moreover, BRIGHT is robust against data leakage during pretraining of the benchmarked models as we validate by showing similar performance even when documents from the benchmark are included in the training data. We believe that BRIGHT paves the way for future research on retrieval systems in more realistic and challenging settings. Our code and data are available at https://brightbenchmark.github.io.