Abstract:In reading garden-path sentences, people must resolve competing interpretations, though initial misinterpretations can linger despite reanalysis. This study examines the role of inhibitory control (IC) in managing these misinterpretations among Chinese-English bilinguals. Using self-paced reading tasks, we investigated how IC influences recovery from garden-path sentences in Chinese (L1) and its interaction with language proficiency during English (L2) processing. Results indicate that IC does not affect garden-path recovery in Chinese, suggesting reliance on semantic context may reduce the need for IC. In contrast, findings for English L2 learners reveal a complex relationship between language proficiency and IC: Participants with low L2 proficiency but high IC showed lingering misinterpretations, while those with high proficiency exhibited none. These results support and extend the Model of Cognitive Control (Ness et al., 2023). Moreover, our comparison of three Stroop task versions identifies L1 colour-word Stroop task as the preferred measure of IC in bilingual research.
Abstract:The emergence of models like GPTs, Claude, LLaMA, and Qwen has reshaped AI applications, presenting vast new opportunities across industries. Yet, the integration of tabular data remains notably underdeveloped, despite its foundational role in numerous real-world domains. This gap is critical for three main reasons. First, database or data warehouse data integration is essential for advanced applications; second, the vast and largely untapped resource of tabular data offers immense potential for analysis; and third, the business intelligence domain specifically demands adaptable, precise solutions that many current LLMs may struggle to provide. In response, we introduce TableGPT2, a model rigorously pre-trained and fine-tuned with over 593.8K tables and 2.36M high-quality query-table-output tuples, a scale of table-related data unprecedented in prior research. This extensive training enables TableGPT2 to excel in table-centric tasks while maintaining strong general language and coding abilities. One of TableGPT2's key innovations is its novel table encoder, specifically designed to capture schema-level and cell-level information. This encoder strengthens the model's ability to handle ambiguous queries, missing column names, and irregular tables commonly encountered in real-world applications. Similar to visual language models, this pioneering approach integrates with the decoder to form a robust large multimodal model. We believe the results are compelling: over 23 benchmarking metrics, TableGPT2 achieves an average performance improvement of 35.20% in the 7B model and 49.32% in the 72B model over prior benchmark-neutral LLMs, with robust general-purpose capabilities intact.
Abstract:We introduce a Python open-source library for $\mathcal{X}$-armed bandit and online blackbox optimization named PyXAB. PyXAB contains the implementations for more than 10 $\mathcal{X}$-armed bandit algorithms, such as HOO, StoSOO, HCT, and the most recent works GPO and VHCT. PyXAB also provides the most commonly-used synthetic objectives to evaluate the performance of different algorithms and the various choices of the hierarchical partitions on the parameter space. The online documentation for PyXAB includes clear instructions for installation, straight-forward examples, detailed feature descriptions, and a complete reference of the API. PyXAB is released under the MIT license in order to encourage both academic and industrial usage. The library can be directly installed from PyPI with its source code available at https://github.com/WilliamLwj/PyXAB