Abstract:Large Language Models (LLMs) and Reinforcement Learning (RL) are two powerful approaches for building autonomous agents. However, due to limited understanding of the game environment, agents often resort to inefficient exploration and trial-and-error, struggling to develop long-term strategies or make decisions. We propose a method that extracts experience from interaction records to model the underlying laws of the game environment, using these experience as internal motivation to guide agents. These experience, expressed in language, are highly flexible and can either assist agents in reasoning directly or be transformed into rewards for guiding training. Our evaluation results in Crafter demonstrate that both RL and LLM agents benefit from these experience, leading to improved overall performance.
Abstract:The emergence of models like GPTs, Claude, LLaMA, and Qwen has reshaped AI applications, presenting vast new opportunities across industries. Yet, the integration of tabular data remains notably underdeveloped, despite its foundational role in numerous real-world domains. This gap is critical for three main reasons. First, database or data warehouse data integration is essential for advanced applications; second, the vast and largely untapped resource of tabular data offers immense potential for analysis; and third, the business intelligence domain specifically demands adaptable, precise solutions that many current LLMs may struggle to provide. In response, we introduce TableGPT2, a model rigorously pre-trained and fine-tuned with over 593.8K tables and 2.36M high-quality query-table-output tuples, a scale of table-related data unprecedented in prior research. This extensive training enables TableGPT2 to excel in table-centric tasks while maintaining strong general language and coding abilities. One of TableGPT2's key innovations is its novel table encoder, specifically designed to capture schema-level and cell-level information. This encoder strengthens the model's ability to handle ambiguous queries, missing column names, and irregular tables commonly encountered in real-world applications. Similar to visual language models, this pioneering approach integrates with the decoder to form a robust large multimodal model. We believe the results are compelling: over 23 benchmarking metrics, TableGPT2 achieves an average performance improvement of 35.20% in the 7B model and 49.32% in the 72B model over prior benchmark-neutral LLMs, with robust general-purpose capabilities intact.
Abstract:The fast advance of the image generation community has attracted attention worldwide. The safety issue needs to be further scrutinized and studied. There have been a few works around this area mostly achieving a post-processing design, model-specific, or yielding suboptimal image quality generation. Despite that, in this article, we discover a black-box attack method that enjoys three merits. It enables (i)-attacks both directed and semantic-driven that theoretically and practically pose a hazard to this vast user community, (ii)-surprisingly surpasses the white-box attack in a black-box manner and (iii)-without requiring any post-processing effort. Core to our approach is inspired by the concept guidance intriguing property of Classifier-Free guidance (CFG) in T2I models, and we discover that conducting frustratingly simple guidance in the CLIP embedding space, coupled with the semantic loss and an additionally sensitive word list works very well. Moreover, our results expose and highlight the vulnerabilities in existing defense mechanisms.
Abstract:Unsupervised domain adaptation (UDA) is a pivotal form in machine learning to extend the in-domain model to the distinctive target domains where the data distributions differ. Most prior works focus on capturing the inter-domain transferability but largely overlook rich intra-domain structures, which empirically results in even worse discriminability. In this work, we introduce a novel graph SPectral Alignment (SPA) framework to tackle the tradeoff. The core of our method is briefly condensed as follows: (i)-by casting the DA problem to graph primitives, SPA composes a coarse graph alignment mechanism with a novel spectral regularizer towards aligning the domain graphs in eigenspaces; (ii)-we further develop a fine-grained message propagation module -- upon a novel neighbor-aware self-training mechanism -- in order for enhanced discriminability in the target domain. On standardized benchmarks, the extensive experiments of SPA demonstrate that its performance has surpassed the existing cutting-edge DA methods. Coupled with dense model analysis, we conclude that our approach indeed possesses superior efficacy, robustness, discriminability, and transferability. Code and data are available at: https://github.com/CrownX/SPA.
Abstract:Graph Neural Networks (GNNs) are powerful tools for graph representation learning. Despite their rapid development, GNNs also faces some challenges, such as over-fitting, over-smoothing, and non-robustness. Previous works indicate that these problems can be alleviated by random dropping methods, which integrate noises into models by randomly masking parts of the input. However, some open-ended problems of random dropping on GNNs remain to solve. First, it is challenging to find a universal method that are suitable for all cases considering the divergence of different datasets and models. Second, random noises introduced to GNNs cause the incomplete coverage of parameters and unstable training process. In this paper, we propose a novel random dropping method called DropMessage, which performs dropping operations directly on the message matrix and can be applied to any message-passing GNNs. Furthermore, we elaborate the superiority of DropMessage: it stabilizes the training process by reducing sample variance; it keeps information diversity from the perspective of information theory, which makes it a theoretical upper bound of other methods. Also, we unify existing random dropping methods into our framework and analyze their effects on GNNs. To evaluate our proposed method, we conduct experiments that aims for multiple tasks on five public datasets and two industrial datasets with various backbone models. The experimental results show that DropMessage has both advantages of effectiveness and generalization.