Abstract:In this paper, we introduce YOLA, a novel framework for object detection in low-light scenarios. Unlike previous works, we propose to tackle this challenging problem from the perspective of feature learning. Specifically, we propose to learn illumination-invariant features through the Lambertian image formation model. We observe that, under the Lambertian assumption, it is feasible to approximate illumination-invariant feature maps by exploiting the interrelationships between neighboring color channels and spatially adjacent pixels. By incorporating additional constraints, these relationships can be characterized in the form of convolutional kernels, which can be trained in a detection-driven manner within a network. Towards this end, we introduce a novel module dedicated to the extraction of illumination-invariant features from low-light images, which can be easily integrated into existing object detection frameworks. Our empirical findings reveal significant improvements in low-light object detection tasks, as well as promising results in both well-lit and over-lit scenarios. Code is available at \url{https://github.com/MingboHong/YOLA}.
Abstract:Task-oriented grasping, which involves grasping specific parts of objects based on their functions, is crucial for developing advanced robotic systems capable of performing complex tasks in dynamic environments. In this paper, we propose a training-free framework that incorporates both semantic and geometric priors for zero-shot task-oriented grasp generation. The proposed framework, SegGrasp, first leverages the vision-language models like GLIP for coarse segmentation. It then uses detailed geometric information from convex decomposition to improve segmentation quality through a fusion policy named GeoFusion. An effective grasp pose can be generated by a grasping network with improved segmentation. We conducted the experiments on both segmentation benchmark and real-world robot grasping. The experimental results show that SegGrasp surpasses the baseline by more than 15\% in grasp and segmentation performance.
Abstract:In this paper, we propose Neural Spectrum Decomposition, a generic decomposition framework for dataset distillation. Unlike previous methods, we consider the entire dataset as a high-dimensional observation that is low-rank across all dimensions. We aim to discover the low-rank representation of the entire dataset and perform distillation efficiently. Toward this end, we learn a set of spectrum tensors and transformation matrices, which, through simple matrix multiplication, reconstruct the data distribution. Specifically, a spectrum tensor can be mapped back to the image space by a transformation matrix, and efficient information sharing during the distillation learning process is achieved through pairwise combinations of different spectrum vectors and transformation matrices. Furthermore, we integrate a trajectory matching optimization method guided by a real distribution. Our experimental results demonstrate that our approach achieves state-of-the-art performance on benchmarks, including CIFAR10, CIFAR100, Tiny Imagenet, and ImageNet Subset. Our code are available at \url{https://github.com/slyang2021/NSD}.
Abstract:Diffusion models have demonstrated superior performance in the field of portrait animation. However, current approaches relied on either visual or audio modality to control character movements, failing to exploit the potential of mixed-modal control. This challenge arises from the difficulty in balancing the weak control strength of audio modality and the strong control strength of visual modality. To address this issue, we introduce MegActor-$\Sigma$: a mixed-modal conditional diffusion transformer (DiT), which can flexibly inject audio and visual modality control signals into portrait animation. Specifically, we make substantial advancements over its predecessor, MegActor, by leveraging the promising model structure of DiT and integrating audio and visual conditions through advanced modules within the DiT framework. To further achieve flexible combinations of mixed-modal control signals, we propose a ``Modality Decoupling Control" training strategy to balance the control strength between visual and audio modalities, along with the ``Amplitude Adjustment" inference strategy to freely regulate the motion amplitude of each modality. Finally, to facilitate extensive studies in this field, we design several dataset evaluation metrics to filter out public datasets and solely use this filtered dataset to train MegActor-$\Sigma$. Extensive experiments demonstrate the superiority of our approach in generating vivid portrait animations, outperforming previous methods trained on private dataset.
Abstract:We propose Diff-Shadow, a global-guided diffusion model for high-quality shadow removal. Previous transformer-based approaches can utilize global information to relate shadow and non-shadow regions but are limited in their synthesis ability and recover images with obvious boundaries. In contrast, diffusion-based methods can generate better content but ignore global information, resulting in inconsistent illumination. In this work, we combine the advantages of diffusion models and global guidance to realize shadow-free restoration. Specifically, we propose a parallel UNets architecture: 1) the local branch performs the patch-based noise estimation in the diffusion process, and 2) the global branch recovers the low-resolution shadow-free images. A Reweight Cross Attention (RCA) module is designed to integrate global contextural information of non-shadow regions into the local branch. We further design a Global-guided Sampling Strategy (GSS) that mitigates patch boundary issues and ensures consistent illumination across shaded and unshaded regions in the recovered image. Comprehensive experiments on three publicly standard datasets ISTD, ISTD+, and SRD have demonstrated the effectiveness of Diff-Shadow. Compared to state-of-the-art methods, our method achieves a significant improvement in terms of PSNR, increasing from 32.33dB to 33.69dB on the SRD dataset. Codes will be released.
Abstract:Despite raw driving videos contain richer information on facial expressions than intermediate representations such as landmarks in the field of portrait animation, they are seldom the subject of research. This is due to two challenges inherent in portrait animation driven with raw videos: 1) significant identity leakage; 2) Irrelevant background and facial details such as wrinkles degrade performance. To harnesses the power of the raw videos for vivid portrait animation, we proposed a pioneering conditional diffusion model named as MegActor. First, we introduced a synthetic data generation framework for creating videos with consistent motion and expressions but inconsistent IDs to mitigate the issue of ID leakage. Second, we segmented the foreground and background of the reference image and employed CLIP to encode the background details. This encoded information is then integrated into the network via a text embedding module, thereby ensuring the stability of the background. Finally, we further style transfer the appearance of the reference image to the driving video to eliminate the influence of facial details in the driving videos. Our final model was trained solely on public datasets, achieving results comparable to commercial models. We hope this will help the open-source community.The code is available at https://github.com/megvii-research/MegFaceAnimate.
Abstract:This paper focuses on the area of RGB(visible)-NIR(near-infrared) cross-modality image registration, which is crucial for many downstream vision tasks to fully leverage the complementary information present in visible and infrared images. In this field, researchers face two primary challenges - the absence of a correctly-annotated benchmark with viewpoint variations for evaluating RGB-NIR cross-modality registration methods and the problem of inconsistent local features caused by the appearance discrepancy between RGB-NIR cross-modality images. To address these challenges, we first present the RGB-NIR Image Registration (RGB-NIR-IRegis) benchmark, which, for the first time, enables fair and comprehensive evaluations for the task of RGB-NIR cross-modality image registration. Evaluations of previous methods highlight the significant challenges posed by our RGB-NIR-IRegis benchmark, especially on RGB-NIR image pairs with viewpoint variations. To analyze the causes of the unsatisfying performance, we then design several metrics to reveal the toxic impact of inconsistent local features between visible and infrared images on the model performance. This further motivates us to develop a baseline method named Semantic Guidance Transformer (SGFormer), which utilizes high-level semantic guidance to mitigate the negative impact of local inconsistent features. Despite the simplicity of our motivation, extensive experimental results show the effectiveness of our method.
Abstract:It is widely believed that the dense supervision is better than the sparse supervision in the field of depth completion, but the underlying reasons for this are rarely discussed. In this paper, we find that the challenge of using sparse supervision for training Radar-Camera depth prediction models is the Projection Transformation Collapse (PTC). The PTC implies that sparse supervision leads the model to learn unexpected collapsed projection transformations between Image/Radar/LiDAR spaces. Building on this insight, we propose a novel ``Disruption-Compensation" framework to handle the PTC, thereby relighting the use of sparse supervision in depth completion tasks. The disruption part deliberately discards position correspondences among Image/Radar/LiDAR, while the compensation part leverages 3D spatial and 2D semantic information to compensate for the discarded beneficial position correspondence. Extensive experimental results demonstrate that our framework (sparse supervision) outperforms the state-of-the-art (dense supervision) with 11.6$\%$ improvement in mean absolute error and $1.6 \times$ speedup. The code is available at ...
Abstract:Optical flow, or the estimation of motion fields from image sequences, is one of the fundamental problems in computer vision. Unlike most pixel-wise tasks that aim at achieving consistent representations of the same category, optical flow raises extra demands for obtaining local discrimination and smoothness, which yet is not fully explored by existing approaches. In this paper, we push Gaussian Attention (GA) into the optical flow models to accentuate local properties during representation learning and enforce the motion affinity during matching. Specifically, we introduce a novel Gaussian-Constrained Layer (GCL) which can be easily plugged into existing Transformer blocks to highlight the local neighborhood that contains fine-grained structural information. Moreover, for reliable motion analysis, we provide a new Gaussian-Guided Attention Module (GGAM) which not only inherits properties from Gaussian distribution to instinctively revolve around the neighbor fields of each point but also is empowered to put the emphasis on contextually related regions during matching. Our fully-equipped model, namely Gaussian Attention Flow network (GAFlow), naturally incorporates a series of novel Gaussian-based modules into the conventional optical flow framework for reliable motion analysis. Extensive experiments on standard optical flow datasets consistently demonstrate the exceptional performance of the proposed approach in terms of both generalization ability evaluation and online benchmark testing. Code is available at https://github.com/LA30/GAFlow.
Abstract:In this paper, we introduce a new approach for high-quality multi-exposure image fusion (MEF). We show that the fusion weights of an exposure can be encoded into a 1D lookup table (LUT), which takes pixel intensity value as input and produces fusion weight as output. We learn one 1D LUT for each exposure, then all the pixels from different exposures can query 1D LUT of that exposure independently for high-quality and efficient fusion. Specifically, to learn these 1D LUTs, we involve attention mechanism in various dimensions including frame, channel and spatial ones into the MEF task so as to bring us significant quality improvement over the state-of-the-art (SOTA). In addition, we collect a new MEF dataset consisting of 960 samples, 155 of which are manually tuned by professionals as ground-truth for evaluation. Our network is trained by this dataset in an unsupervised manner. Extensive experiments are conducted to demonstrate the effectiveness of all the newly proposed components, and results show that our approach outperforms the SOTA in our and another representative dataset SICE, both qualitatively and quantitatively. Moreover, our 1D LUT approach takes less than 4ms to run a 4K image on a PC GPU. Given its high quality, efficiency and robustness, our method has been shipped into millions of Android mobiles across multiple brands world-wide. Code is available at: https://github.com/Hedlen/MEFLUT.