Abstract:Task-oriented grasping, which involves grasping specific parts of objects based on their functions, is crucial for developing advanced robotic systems capable of performing complex tasks in dynamic environments. In this paper, we propose a training-free framework that incorporates both semantic and geometric priors for zero-shot task-oriented grasp generation. The proposed framework, SegGrasp, first leverages the vision-language models like GLIP for coarse segmentation. It then uses detailed geometric information from convex decomposition to improve segmentation quality through a fusion policy named GeoFusion. An effective grasp pose can be generated by a grasping network with improved segmentation. We conducted the experiments on both segmentation benchmark and real-world robot grasping. The experimental results show that SegGrasp surpasses the baseline by more than 15\% in grasp and segmentation performance.
Abstract:Hand-object interaction understanding and the barely addressed novel view synthesis are highly desired in the immersive communication, whereas it is challenging due to the high deformation of hand and heavy occlusions between hand and object. In this paper, we propose a neural rendering and pose estimation system for hand-object interaction from sparse views, which can also enable 3D hand-object interaction editing. We share the inspiration from recent scene understanding work that shows a scene specific model built beforehand can significantly improve and unblock vision tasks especially when inputs are sparse, and extend it to the dynamic hand-object interaction scenario and propose to solve the problem in two stages. We first learn the shape and appearance prior knowledge of hands and objects separately with the neural representation at the offline stage. During the online stage, we design a rendering-based joint model fitting framework to understand the dynamic hand-object interaction with the pre-built hand and object models as well as interaction priors, which thereby overcomes penetration and separation issues between hand and object and also enables novel view synthesis. In order to get stable contact during the hand-object interaction process in a sequence, we propose a stable contact loss to make the contact region to be consistent. Experiments demonstrate that our method outperforms the state-of-the-art methods. Code and dataset are available in project webpage https://iscas3dv.github.io/HO-NeRF.