Abstract:Existing real-world image dehazing methods primarily attempt to fine-tune pre-trained models or adapt their inference procedures, thus heavily relying on the pre-trained models and associated training data. Moreover, restoring heavily distorted information under dense haze requires generative diffusion models, whose potential in dehazing remains underutilized partly due to their lengthy sampling processes. To address these limitations, we introduce a novel hazing-dehazing pipeline consisting of a Realistic Hazy Image Generation framework (HazeGen) and a Diffusion-based Dehazing framework (DiffDehaze). Specifically, HazeGen harnesses robust generative diffusion priors of real-world hazy images embedded in a pre-trained text-to-image diffusion model. By employing specialized hybrid training and blended sampling strategies, HazeGen produces realistic and diverse hazy images as high-quality training data for DiffDehaze. To alleviate the inefficiency and fidelity concerns associated with diffusion-based methods, DiffDehaze adopts an Accelerated Fidelity-Preserving Sampling process (AccSamp). The core of AccSamp is the Tiled Statistical Alignment Operation (AlignOp), which can provide a clean and faithful dehazing estimate within a small fraction of sampling steps to reduce complexity and enable effective fidelity guidance. Extensive experiments demonstrate the superior dehazing performance and visual quality of our approach over existing methods. The code is available at https://github.com/ruiyi-w/Learning-Hazing-to-Dehazing.
Abstract:RAW-to-sRGB mapping, or the simulation of the traditional camera image signal processor (ISP), aims to generate DSLR-quality sRGB images from raw data captured by smartphone sensors. Despite achieving comparable results to sophisticated handcrafted camera ISP solutions, existing learning-based methods still struggle with detail disparity and color distortion. In this paper, we present ISPDiffuser, a diffusion-based decoupled framework that separates the RAW-to-sRGB mapping into detail reconstruction in grayscale space and color consistency mapping from grayscale to sRGB. Specifically, we propose a texture-aware diffusion model that leverages the generative ability of diffusion models to focus on local detail recovery, in which a texture enrichment loss is further proposed to prompt the diffusion model to generate more intricate texture details. Subsequently, we introduce a histogram-guided color consistency module that utilizes color histogram as guidance to learn precise color information for grayscale to sRGB color consistency mapping, with a color consistency loss designed to constrain the learned color information. Extensive experimental results show that the proposed ISPDiffuser outperforms state-of-the-art competitors both quantitatively and visually. The code is available at https://github.com/RenYangSCU/ISPDiffuser.
Abstract:Scene-level point cloud registration is very challenging when considering dynamic foregrounds. Existing indoor datasets mostly assume rigid motions, so the trained models cannot robustly handle scenes with non-rigid motions. On the other hand, non-rigid datasets are mainly object-level, so the trained models cannot generalize well to complex scenes. This paper presents HybridReg, a new approach to 3D point cloud registration, learning uncertainty mask to account for hybrid motions: rigid for backgrounds and non-rigid/rigid for instance-level foregrounds. First, we build a scene-level 3D registration dataset, namely HybridMatch, designed specifically with strategies to arrange diverse deforming foregrounds in a controllable manner. Second, we account for different motion types and formulate a mask-learning module to alleviate the interference of deforming outliers. Third, we exploit a simple yet effective negative log-likelihood loss to adopt uncertainty to guide the feature extraction and correlation computation. To our best knowledge, HybridReg is the first work that exploits hybrid motions for robust point cloud registration. Extensive experiments show HybridReg's strengths, leading it to achieve state-of-the-art performance on both widely-used indoor and outdoor datasets.
Abstract:Robots can acquire complex manipulation skills by learning policies from expert demonstrations, which is often known as vision-based imitation learning. Generating policies based on diffusion and flow matching models has been shown to be effective, particularly in robotics manipulation tasks. However, recursion-based approaches are often inference inefficient in working from noise distributions to policy distributions, posing a challenging trade-off between efficiency and quality. This motivates us to propose FlowPolicy, a novel framework for fast policy generation based on consistency flow matching and 3D vision. Our approach refines the flow dynamics by normalizing the self-consistency of the velocity field, enabling the model to derive task execution policies in a single inference step. Specifically, FlowPolicy conditions on the observed 3D point cloud, where consistency flow matching directly defines straight-line flows from different time states to the same action space, while simultaneously constraining their velocity values, that is, we approximate the trajectories from noise to robot actions by normalizing the self-consistency of the velocity field within the action space, thus improving the inference efficiency. We validate the effectiveness of FlowPolicy on Adroit and Metaworld, demonstrating a 7$\times$ increase in inference speed while maintaining competitive average success rates compared to state-of-the-art policy models. Codes will be made publicly available.
Abstract:In this paper, we introduce YOLA, a novel framework for object detection in low-light scenarios. Unlike previous works, we propose to tackle this challenging problem from the perspective of feature learning. Specifically, we propose to learn illumination-invariant features through the Lambertian image formation model. We observe that, under the Lambertian assumption, it is feasible to approximate illumination-invariant feature maps by exploiting the interrelationships between neighboring color channels and spatially adjacent pixels. By incorporating additional constraints, these relationships can be characterized in the form of convolutional kernels, which can be trained in a detection-driven manner within a network. Towards this end, we introduce a novel module dedicated to the extraction of illumination-invariant features from low-light images, which can be easily integrated into existing object detection frameworks. Our empirical findings reveal significant improvements in low-light object detection tasks, as well as promising results in both well-lit and over-lit scenarios. Code is available at \url{https://github.com/MingboHong/YOLA}.
Abstract:In this paper, we propose Neural Spectrum Decomposition, a generic decomposition framework for dataset distillation. Unlike previous methods, we consider the entire dataset as a high-dimensional observation that is low-rank across all dimensions. We aim to discover the low-rank representation of the entire dataset and perform distillation efficiently. Toward this end, we learn a set of spectrum tensors and transformation matrices, which, through simple matrix multiplication, reconstruct the data distribution. Specifically, a spectrum tensor can be mapped back to the image space by a transformation matrix, and efficient information sharing during the distillation learning process is achieved through pairwise combinations of different spectrum vectors and transformation matrices. Furthermore, we integrate a trajectory matching optimization method guided by a real distribution. Our experimental results demonstrate that our approach achieves state-of-the-art performance on benchmarks, including CIFAR10, CIFAR100, Tiny Imagenet, and ImageNet Subset. Our code are available at \url{https://github.com/slyang2021/NSD}.
Abstract:Transformer-based deep models for single image super-resolution (SISR) have greatly improved the performance of lightweight SISR tasks in recent years. However, they often suffer from heavy computational burden and slow inference due to the complex calculation of multi-head self-attention (MSA), seriously hindering their practical application and deployment. In this work, we present an efficient SR model to mitigate the dilemma between model efficiency and SR performance, which is dubbed Entropy Attention and Receptive Field Augmentation network (EARFA), and composed of a novel entropy attention (EA) and a shifting large kernel attention (SLKA). From the perspective of information theory, EA increases the entropy of intermediate features conditioned on a Gaussian distribution, providing more informative input for subsequent reasoning. On the other hand, SLKA extends the receptive field of SR models with the assistance of channel shifting, which also favors to boost the diversity of hierarchical features. Since the implementation of EA and SLKA does not involve complex computations (such as extensive matrix multiplications), the proposed method can achieve faster nonlinear inference than Transformer-based SR models while maintaining better SR performance. Extensive experiments show that the proposed model can significantly reduce the delay of model inference while achieving the SR performance comparable with other advanced models.
Abstract:We propose Diff-Shadow, a global-guided diffusion model for high-quality shadow removal. Previous transformer-based approaches can utilize global information to relate shadow and non-shadow regions but are limited in their synthesis ability and recover images with obvious boundaries. In contrast, diffusion-based methods can generate better content but ignore global information, resulting in inconsistent illumination. In this work, we combine the advantages of diffusion models and global guidance to realize shadow-free restoration. Specifically, we propose a parallel UNets architecture: 1) the local branch performs the patch-based noise estimation in the diffusion process, and 2) the global branch recovers the low-resolution shadow-free images. A Reweight Cross Attention (RCA) module is designed to integrate global contextural information of non-shadow regions into the local branch. We further design a Global-guided Sampling Strategy (GSS) that mitigates patch boundary issues and ensures consistent illumination across shaded and unshaded regions in the recovered image. Comprehensive experiments on three publicly standard datasets ISTD, ISTD+, and SRD have demonstrated the effectiveness of Diff-Shadow. Compared to state-of-the-art methods, our method achieves a significant improvement in terms of PSNR, increasing from 32.33dB to 33.69dB on the SRD dataset. Codes will be released.
Abstract:Data plays a crucial role in training learning-based methods for 3D point cloud registration. However, the real-world dataset is expensive to build, while rendering-based synthetic data suffers from domain gaps. In this work, we present PointRegGPT, boosting 3D point cloud registration using generative point-cloud pairs for training. Given a single depth map, we first apply a random camera motion to re-project it into a target depth map. Converting them to point clouds gives a training pair. To enhance the data realism, we formulate a generative model as a depth inpainting diffusion to process the target depth map with the re-projected source depth map as the condition. Also, we design a depth correction module to alleviate artifacts caused by point penetration during the re-projection. To our knowledge, this is the first generative approach that explores realistic data generation for indoor point cloud registration. When equipped with our approach, several recent algorithms can improve their performance significantly and achieve SOTA consistently on two common benchmarks. The code and dataset will be released on https://github.com/Chen-Suyi/PointRegGPT.
Abstract:Most existing Low-light Image Enhancement (LLIE) methods either directly map Low-Light (LL) to Normal-Light (NL) images or use semantic or illumination maps as guides. However, the ill-posed nature of LLIE and the difficulty of semantic retrieval from impaired inputs limit these methods, especially in extremely low-light conditions. To address this issue, we present a new LLIE network via Generative LAtent feature based codebook REtrieval (GLARE), in which the codebook prior is derived from undegraded NL images using a Vector Quantization (VQ) strategy. More importantly, we develop a generative Invertible Latent Normalizing Flow (I-LNF) module to align the LL feature distribution to NL latent representations, guaranteeing the correct code retrieval in the codebook. In addition, a novel Adaptive Feature Transformation (AFT) module, featuring an adjustable function for users and comprising an Adaptive Mix-up Block (AMB) along with a dual-decoder architecture, is devised to further enhance fidelity while preserving the realistic details provided by codebook prior. Extensive experiments confirm the superior performance of GLARE on various benchmark datasets and real-world data. Its effectiveness as a preprocessing tool in low-light object detection tasks further validates GLARE for high-level vision applications. Code is released at https://github.com/LowLevelAI/GLARE.