Abstract:Hyperspectral images (HSIs) are frequently noisy and of low resolution due to the constraints of imaging devices. Recently launched satellites can concurrently acquire HSIs and panchromatic (PAN) images, enabling the restoration of HSIs to generate clean and high-resolution imagery through fusing PAN images for denoising and super-resolution. However, previous studies treated these two tasks as independent processes, resulting in accumulated errors. This paper introduces \textbf{H}yperspectral \textbf{I}mage Joint \textbf{Pand}enoising \textbf{a}nd Pan\textbf{s}harpening (Hipandas), a novel learning paradigm that reconstructs HRHS images from noisy low-resolution HSIs (LRHS) and high-resolution PAN images. The proposed zero-shot Hipandas framework consists of a guided denoising network, a guided super-resolution network, and a PAN reconstruction network, utilizing an HSI low-rank prior and a newly introduced detail-oriented low-rank prior. The interconnection of these networks complicates the training process, necessitating a two-stage training strategy to ensure effective training. Experimental results on both simulated and real-world datasets indicate that the proposed method surpasses state-of-the-art algorithms, yielding more accurate and visually pleasing HRHS images.
Abstract:Multi-modal image fusion aggregates information from multiple sensor sources, achieving superior visual quality and perceptual characteristics compared to any single source, often enhancing downstream tasks. However, current fusion methods for downstream tasks still use predefined fusion objectives that potentially mismatch the downstream tasks, limiting adaptive guidance and reducing model flexibility. To address this, we propose Task-driven Image Fusion (TDFusion), a fusion framework incorporating a learnable fusion loss guided by task loss. Specifically, our fusion loss includes learnable parameters modeled by a neural network called the loss generation module. This module is supervised by the loss of downstream tasks in a meta-learning manner. The learning objective is to minimize the task loss of the fused images, once the fusion module has been optimized by the fusion loss. Iterative updates between the fusion module and the loss module ensure that the fusion network evolves toward minimizing task loss, guiding the fusion process toward the task objectives. TDFusion's training relies solely on the loss of downstream tasks, making it adaptable to any specific task. It can be applied to any architecture of fusion and task networks. Experiments demonstrate TDFusion's performance in both fusion and task-related applications, including four public fusion datasets, semantic segmentation, and object detection. The code will be released.
Abstract:This paper introduces a novel paradigm for hyperspectral image (HSI) denoising, which is termed \textit{pan-denoising}. In a given scene, panchromatic (PAN) images capture similar structures and textures to HSIs but with less noise. This enables the utilization of PAN images to guide the HSI denoising process. Consequently, pan-denoising, which incorporates an additional prior, has the potential to uncover underlying structures and details beyond the internal information modeling of traditional HSI denoising methods. However, the proper modeling of this additional prior poses a significant challenge. To alleviate this issue, the paper proposes a novel regularization term, Panchromatic Weighted Representation Coefficient Total Variation (PWRCTV). It employs the gradient maps of PAN images to automatically assign different weights of TV regularization for each pixel, resulting in larger weights for smooth areas and smaller weights for edges. This regularization forms the basis of a pan-denoising model, which is solved using the Alternating Direction Method of Multipliers. Extensive experiments on synthetic and real-world datasets demonstrate that PWRCTV outperforms several state-of-the-art methods in terms of metrics and visual quality. Furthermore, an HSI classification experiment confirms that PWRCTV, as a preprocessing method, can enhance the performance of downstream classification tasks. The code and data are available at https://github.com/shuangxu96/PWRCTV.
Abstract:Designing 3D indoor layouts is a crucial task with significant applications in virtual reality, interior design, and automated space planning. Existing methods for 3D layout design either rely on diffusion models, which utilize spatial relationship priors, or heavily leverage the inferential capabilities of proprietary Large Language Models (LLMs), which require extensive prompt engineering and in-context exemplars via black-box trials. These methods often face limitations in generalization and dynamic scene editing. In this paper, we introduce LLplace, a novel 3D indoor scene layout designer based on lightweight fine-tuned open-source LLM Llama3. LLplace circumvents the need for spatial relationship priors and in-context exemplars, enabling efficient and credible room layout generation based solely on user inputs specifying the room type and desired objects. We curated a new dialogue dataset based on the 3D-Front dataset, expanding the original data volume and incorporating dialogue data for adding and removing objects. This dataset can enhance the LLM's spatial understanding. Furthermore, through dialogue, LLplace activates the LLM's capability to understand 3D layouts and perform dynamic scene editing, enabling the addition and removal of objects. Our approach demonstrates that LLplace can effectively generate and edit 3D indoor layouts interactively and outperform existing methods in delivering high-quality 3D design solutions. Code and dataset will be released.
Abstract:With the advancement of diffusion models (DMs) and the substantially increased computational requirements, quantization emerges as a practical solution to obtain compact and efficient low-bit DMs. However, the highly discrete representation leads to severe accuracy degradation, hindering the quantization of diffusion models to ultra-low bit-widths. In this paper, we propose BinaryDM, a novel accurate quantization-aware training approach to push the weights of diffusion models towards the limit of 1-bit. Firstly, we present a Learnable Multi-basis Binarizer (LMB) to recover the representations generated by the binarized DM, which improves the information in details of representations crucial to the DM. Secondly, a Low-rank Representation Mimicking (LRM) is applied to enhance the binarization-aware optimization of the DM, alleviating the optimization direction ambiguity caused by fine-grained alignment. Moreover, a progressive initialization strategy is applied to training DMs to avoid convergence difficulties. Comprehensive experiments demonstrate that BinaryDM achieves significant accuracy and efficiency gains compared to SOTA quantization methods of DMs under ultra-low bit-widths. As the first binarization method for diffusion models, BinaryDM achieves impressive 16.0 times FLOPs and 27.1 times storage savings with 1-bit weight and 4-bit activation, showcasing its substantial advantages and potential for deploying DMs on resource-limited scenarios.
Abstract:Model generalization ability upon incrementally acquiring dynamically updating knowledge from sequentially arriving tasks is crucial to tackle the sensitivity-stability dilemma in Continual Learning (CL). Weight loss landscape sharpness minimization seeking for flat minima lying in neighborhoods with uniform low loss or smooth gradient is proven to be a strong training regime improving model generalization compared with loss minimization based optimizer like SGD. Yet only a few works have discussed this training regime for CL, proving that dedicated designed zeroth-order sharpness optimizer can improve CL performance. In this work, we propose a Continual Flatness (C-Flat) method featuring a flatter loss landscape tailored for CL. C-Flat could be easily called with only one line of code and is plug-and-play to any CL methods. A general framework of C-Flat applied to all CL categories and a thorough comparison with loss minima optimizer and flat minima based CL approaches is presented in this paper, showing that our method can boost CL performance in almost all cases. Code will be publicly available upon publication.
Abstract:Image fusion integrates essential information from multiple source images into a single composite, emphasizing the highlighting structure and textures, and refining imperfect areas. Existing methods predominantly focus on pixel-level and semantic visual features for recognition. However, they insufficiently explore the deeper semantic information at a text-level beyond vision. Therefore, we introduce a novel fusion paradigm named image Fusion via vIsion-Language Model (FILM), for the first time, utilizing explicit textual information in different source images to guide image fusion. In FILM, input images are firstly processed to generate semantic prompts, which are then fed into ChatGPT to obtain rich textual descriptions. These descriptions are fused in the textual domain and guide the extraction of crucial visual features from the source images through cross-attention, resulting in a deeper level of contextual understanding directed by textual semantic information. The final fused image is created by vision feature decoder. This paradigm achieves satisfactory results in four image fusion tasks: infrared-visible, medical, multi-exposure, and multi-focus image fusion. We also propose a vision-language dataset containing ChatGPT-based paragraph descriptions for the ten image fusion datasets in four fusion tasks, facilitating future research in vision-language model-based image fusion. Code and dataset will be released.
Abstract:Image fusion aims to combine information from multiple source images into a single and more informative image. A major challenge for deep learning-based image fusion algorithms is the absence of a definitive ground truth and distance measurement. Thus, the manually specified loss functions aiming to steer the model learning, include hyperparameters that need to be manually thereby limiting the model's flexibility and generalizability to unseen tasks. To overcome the limitations of designing loss functions for specific fusion tasks, we propose a unified meta-learning based fusion framework named ReFusion, which learns optimal fusion loss from reconstructing source images. ReFusion consists of a fusion module, a loss proposal module, and a reconstruction module. Compared with the conventional methods with fixed loss functions, ReFusion employs a parameterized loss function, which is dynamically adapted by the loss proposal module based on the specific fusion scene and task. To ensure that the fusion network preserves maximal information from the source images, makes it possible to reconstruct the original images from the fusion image, a meta-learning strategy is used to make the reconstruction loss continually refine the parameters of the loss proposal module. Adaptive updating is achieved by alternating between inter update, outer update, and fusion update, where the training of the three components facilitates each other. Extensive experiments affirm that our method can successfully adapt to diverse fusion tasks, including infrared-visible, multi-focus, multi-exposure, and medical image fusion problems. The code will be released.
Abstract:Owing to its significant success, the prior imposed on gradient maps has consistently been a subject of great interest in the field of image processing. Total variation (TV), one of the most representative regularizers, is known for its ability to capture the intrinsic sparsity prior underlying gradient maps. Nonetheless, TV and its variants often underestimate the gradient maps, leading to the weakening of edges and details whose gradients should not be zero in the original image (i.e., image structures is not describable by sparse priors of gradient maps). Recently, total deep variation (TDV) has been introduced, assuming the sparsity of feature maps, which provides a flexible regularization learned from large-scale datasets for a specific task. However, TDV requires to retrain the network with image/task variations, limiting its versatility. To alleviate this issue, in this paper, we propose a neural gradient regularizer (NGR) that expresses the gradient map as the output of a neural network. Unlike existing methods, NGR does not rely on any subjective sparsity or other prior assumptions on image gradient maps, thereby avoiding the underestimation of gradient maps. NGR is applicable to various image types and different image processing tasks, functioning in a zero-shot learning fashion, making it a versatile and plug-and-play regularizer. Extensive experimental results demonstrate the superior performance of NGR over state-of-the-art counterparts for a range of different tasks, further validating its effectiveness and versatility.
Abstract:Multi-modality image fusion is a technique used to combine information from different sensors or modalities, allowing the fused image to retain complementary features from each modality, such as functional highlights and texture details. However, effectively training such fusion models is difficult due to the lack of ground truth fusion data. To address this issue, we propose the Equivariant Multi-Modality imAge fusion (EMMA) paradigm for end-to-end self-supervised learning. Our approach is based on the prior knowledge that natural images are equivariant to specific transformations. Thus, we introduce a novel training framework that includes a fusion module and a learnable pseudo-sensing module, which allow the network training to follow the principles of physical sensing and imaging process, and meanwhile satisfy the equivariant prior for natural images. Our extensive experiments demonstrate that our method produces high-quality fusion results for both infrared-visible and medical images, while facilitating downstream multi-modal segmentation and detection tasks. The code will be released.