Abstract:Diffusion models have received wide attention in generation tasks. However, the expensive computation cost prevents the application of diffusion models in resource-constrained scenarios. Quantization emerges as a practical solution that significantly saves storage and computation by reducing the bit-width of parameters. However, the existing quantization methods for diffusion models still cause severe degradation in performance, especially under extremely low bit-widths (2-4 bit). The primary decrease in performance comes from the significant discretization of activation values at low bit quantization. Too few activation candidates are unfriendly for outlier significant weight channel quantization, and the discretized features prevent stable learning over different time steps of the diffusion model. This paper presents MPQ-DM, a Mixed-Precision Quantization method for Diffusion Models. The proposed MPQ-DM mainly relies on two techniques:(1) To mitigate the quantization error caused by outlier severe weight channels, we propose an Outlier-Driven Mixed Quantization (OMQ) technique that uses $Kurtosis$ to quantify outlier salient channels and apply optimized intra-layer mixed-precision bit-width allocation to recover accuracy performance within target efficiency.(2) To robustly learn representations crossing time steps, we construct a Time-Smoothed Relation Distillation (TRD) scheme between the quantized diffusion model and its full-precision counterpart, transferring discrete and continuous latent to a unified relation space to reduce the representation inconsistency. Comprehensive experiments demonstrate that MPQ-DM achieves significant accuracy gains under extremely low bit-widths compared with SOTA quantization methods. MPQ-DM achieves a 58\% FID decrease under W2A4 setting compared with baseline, while all other methods even collapse.
Abstract:Although the diffusion model has achieved remarkable performance in the field of image generation, its high inference delay hinders its wide application in edge devices with scarce computing resources. Therefore, many training-free sampling methods have been proposed to reduce the number of sampling steps required for diffusion models. However, they perform poorly under a very small number of sampling steps. Thanks to the emergence of knowledge distillation technology, the existing training scheme methods have achieved excellent results at very low step numbers. However, the current methods mainly focus on designing novel diffusion model sampling methods with knowledge distillation. How to transfer better diffusion knowledge from teacher models is a more valuable problem but rarely studied. Therefore, we propose Relational Diffusion Distillation (RDD), a novel distillation method tailored specifically for distilling diffusion models. Unlike existing methods that simply align teacher and student models at pixel level or feature distributions, our method introduces cross-sample relationship interaction during the distillation process and alleviates the memory constraints induced by multiple sample interactions. Our RDD significantly enhances the effectiveness of the progressive distillation framework within the diffusion model. Extensive experiments on several datasets (e.g., CIFAR-10 and ImageNet) demonstrate that our proposed RDD leads to 1.47 FID decrease under 1 sampling step compared to state-of-the-art diffusion distillation methods and achieving 256x speed-up compared to DDIM strategy. Code is available at https://github.com/cantbebetter2/RDD.
Abstract:Continual learning (CL) is designed to learn new tasks while preserving existing knowledge. Replaying samples from earlier tasks has proven to be an effective method to mitigate the forgetting of previously acquired knowledge. However, the current research on the training efficiency of rehearsal-based methods is insufficient, which limits the practical application of CL systems in resource-limited scenarios. The human visual system (HVS) exhibits varying sensitivities to different frequency components, enabling the efficient elimination of visually redundant information. Inspired by HVS, we propose a novel framework called Continual Learning in the Frequency Domain (CLFD). To our knowledge, this is the first study to utilize frequency domain features to enhance the performance and efficiency of CL training on edge devices. For the input features of the feature extractor, CLFD employs wavelet transform to map the original input image into the frequency domain, thereby effectively reducing the size of input feature maps. Regarding the output features of the feature extractor, CLFD selectively utilizes output features for distinct classes for classification, thereby balancing the reusability and interference of output features based on the frequency domain similarity of the classes across various tasks. Optimizing only the input and output features of the feature extractor allows for seamless integration of CLFD with various rehearsal-based methods. Extensive experiments conducted in both cloud and edge environments demonstrate that CLFD consistently improves the performance of state-of-the-art (SOTA) methods in both precision and training efficiency. Specifically, CLFD can increase the accuracy of the SOTA CL method by up to 6.83% and reduce the training time by 2.6$\times$.
Abstract:Incremental object detection aims to simultaneously maintain old-class accuracy and detect emerging new-class objects in incremental data. Most existing distillation-based methods underperform when unlabeled old-class objects are absent in the incremental dataset. While the absence can be mitigated by generating old-class samples, it also incurs high computational costs. In this paper, we argue that the extra computational cost stems from the inconsistency between the detector and the generative model, along with redundant generation. To overcome this problem, we propose Efficient Generated Object Replay (EGOR). Specifically, we generate old-class samples by inversing the original detectors, thus eliminating the necessity of training and storing additional generative models. We also propose augmented replay to reuse the objects in generated samples, thereby reducing the redundant generation. In addition, we propose high-response knowledge distillation focusing on the knowledge related to the old class, which transfers the knowledge in generated objects to the incremental detector. With the addition of the generated objects and losses, we observe a bias towards old classes in the detector. We balance the losses for old and new classes to alleviate the bias, thereby increasing the overall detection accuracy. Extensive experiments conducted on MS COCO 2017 demonstrate that our method can efficiently improve detection performance in the absence of old-class objects.
Abstract:Continual Learning methods are designed to learn new tasks without erasing previous knowledge. However, Continual Learning often requires massive computational power and storage capacity for satisfactory performance. In this paper, we propose a resource-efficient continual learning method called the Elastic Expansion Network (E2Net). Leveraging core subnet distillation and precise replay sample selection, E2Net achieves superior average accuracy and diminished forgetting within the same computational and storage constraints, all while minimizing processing time. In E2Net, we propose Representative Network Distillation to identify the representative core subnet by assessing parameter quantity and output similarity with the working network, distilling analogous subnets within the working network to mitigate reliance on rehearsal buffers and facilitating knowledge transfer across previous tasks. To enhance storage resource utilization, we then propose Subnet Constraint Experience Replay to optimize rehearsal efficiency through a sample storage strategy based on the structures of representative networks. Extensive experiments conducted predominantly on cloud environments with diverse datasets and also spanning the edge environment demonstrate that E2Net consistently outperforms state-of-the-art methods. In addition, our method outperforms competitors in terms of both storage and computational requirements.
Abstract:Class-Incremental Learning (CIL) aims to solve the neural networks' catastrophic forgetting problem, which refers to the fact that once the network updates on a new task, its performance on previously-learned tasks drops dramatically. Most successful CIL methods incrementally train a feature extractor with the aid of stored exemplars, or estimate the feature distribution with the stored prototypes. However, the stored exemplars would violate the data privacy concerns, while the stored prototypes might not reasonably be consistent with a proper feature distribution, hindering the exploration of real-world CIL applications. In this paper, we propose a method of \textit{e}mbedding distillation and \textit{Ta}sk-oriented \textit{g}eneration (\textit{eTag}) for CIL, which requires neither the exemplar nor the prototype. Instead, eTag achieves a data-free manner to train the neural networks incrementally. To prevent the feature extractor from forgetting, eTag distills the embeddings of the network's intermediate blocks. Additionally, eTag enables a generative network to produce suitable features, fitting the needs of the top incremental classifier. Experimental results confirmed that our proposed eTag considerably outperforms the state-of-the-art methods on CIFAR-100 and ImageNet-sub\footnote{Our code is available in the Supplementary Materials.
Abstract:In this work, we propose a heuristic genetic algorithm (GA) for pruning convolutional neural networks (CNNs) according to the multi-objective trade-off among error, computation and sparsity. In our experiments, we apply our approach to prune pre-trained LeNet across the MNIST dataset, which reduces 95.42% parameter size and achieves 16$\times$ speedups of convolutional layer computation with tiny accuracy loss by laying emphasis on sparsity and computation, respectively. Our empirical study suggests that GA is an alternative pruning approach for obtaining a competitive compression performance. Additionally, compared with state-of-the-art approaches, GA is capable of automatically pruning CNNs based on the multi-objective importance by a pre-defined fitness function.