Abstract:Despite significant advances in deepfake detection, handling varying image quality, especially due to different compressions on online social networks (OSNs), remains challenging. Current methods succeed by leveraging correlations between paired images, whether raw or compressed. However, in open-world scenarios, paired data is scarce, with compressed images readily available but corresponding raw versions difficult to obtain. This imbalance, where unpaired data vastly outnumbers paired data, often leads to reduced detection performance, as existing methods struggle without corresponding raw images. To overcome this issue, we propose a novel approach named the open-world deepfake detection network (ODDN), which comprises two core modules: open-world data aggregation (ODA) and compression-discard gradient correction (CGC). ODA effectively aggregates correlations between compressed and raw samples through both fine-grained and coarse-grained analyses for paired and unpaired data, respectively. CGC incorporates a compression-discard gradient correction to further enhance performance across diverse compression methods in OSN. This technique optimizes the training gradient to ensure the model remains insensitive to compression variations. Extensive experiments conducted on 17 popular deepfake datasets demonstrate the superiority of the ODDN over SOTA baselines.
Abstract:While neural machine translation (NMT) models achieve success in our daily lives, they show vulnerability to adversarial attacks. Despite being harmful, these attacks also offer benefits for interpreting and enhancing NMT models, thus drawing increased research attention. However, existing studies on adversarial attacks are insufficient in both attacking ability and human imperceptibility due to their sole focus on the scope of language. This paper proposes a novel vision-fused attack (VFA) framework to acquire powerful adversarial text, i.e., more aggressive and stealthy. Regarding the attacking ability, we design the vision-merged solution space enhancement strategy to enlarge the limited semantic solution space, which enables us to search for adversarial candidates with higher attacking ability. For human imperceptibility, we propose the perception-retained adversarial text selection strategy to align the human text-reading mechanism. Thus, the finally selected adversarial text could be more deceptive. Extensive experiments on various models, including large language models (LLMs) like LLaMA and GPT-3.5, strongly support that VFA outperforms the comparisons by large margins (up to 81%/14% improvements on ASR/SSIM).
Abstract:This work focuses on AIGC detection to develop universal detectors capable of identifying various types of forgery images. Recent studies have found large pre-trained models, such as CLIP, are effective for generalizable deepfake detection along with linear classifiers. However, two critical issues remain unresolved: 1) understanding why CLIP features are effective on deepfake detection through a linear classifier; and 2) exploring the detection potential of CLIP. In this study, we delve into the underlying mechanisms of CLIP's detection capabilities by decoding its detection features into text and performing word frequency analysis. Our finding indicates that CLIP detects deepfakes by recognizing similar concepts (Fig. \ref{fig:fig1} a). Building on this insight, we introduce Category Common Prompt CLIP, called C2P-CLIP, which integrates the category common prompt into the text encoder to inject category-related concepts into the image encoder, thereby enhancing detection performance (Fig. \ref{fig:fig1} b). Our method achieves a 12.41\% improvement in detection accuracy compared to the original CLIP, without introducing additional parameters during testing. Comprehensive experiments conducted on two widely-used datasets, encompassing 20 generation models, validate the efficacy of the proposed method, demonstrating state-of-the-art performance. The code is available at \url{https://github.com/chuangchuangtan/C2P-CLIP-DeepfakeDetection}
Abstract:Adversarial attacks are valuable for evaluating the robustness of deep learning models. Existing attacks are primarily conducted on the visible light spectrum (e.g., pixel-wise texture perturbation). However, attacks targeting texture-free X-ray images remain underexplored, despite the widespread application of X-ray imaging in safety-critical scenarios such as the X-ray detection of prohibited items. In this paper, we take the first step toward the study of adversarial attacks targeted at X-ray prohibited item detection, and reveal the serious threats posed by such attacks in this safety-critical scenario. Specifically, we posit that successful physical adversarial attacks in this scenario should be specially designed to circumvent the challenges posed by color/texture fading and complex overlapping. To this end, we propose X-adv to generate physically printable metals that act as an adversarial agent capable of deceiving X-ray detectors when placed in luggage. To resolve the issues associated with color/texture fading, we develop a differentiable converter that facilitates the generation of 3D-printable objects with adversarial shapes, using the gradients of a surrogate model rather than directly generating adversarial textures. To place the printed 3D adversarial objects in luggage with complex overlapped instances, we design a policy-based reinforcement learning strategy to find locations eliciting strong attack performance in worst-case scenarios whereby the prohibited items are heavily occluded by other items. To verify the effectiveness of the proposed X-Adv, we conduct extensive experiments in both the digital and the physical world (employing a commercial X-ray security inspection system for the latter case). Furthermore, we present the physical-world X-ray adversarial attack dataset XAD.
Abstract:To operate in real-world high-stakes environments, deep learning systems have to endure noises that have been continuously thwarting their robustness. Data-end defense, which improves robustness by operations on input data instead of modifying models, has attracted intensive attention due to its feasibility in practice. However, previous data-end defenses show low generalization against diverse noises and weak transferability across multiple models. Motivated by the fact that robust recognition depends on both local and global features, we propose a defensive patch generation framework to address these problems by helping models better exploit these features. For the generalization against diverse noises, we inject class-specific identifiable patterns into a confined local patch prior, so that defensive patches could preserve more recognizable features towards specific classes, leading models for better recognition under noises. For the transferability across multiple models, we guide the defensive patches to capture more global feature correlations within a class, so that they could activate model-shared global perceptions and transfer better among models. Our defensive patches show great potentials to improve application robustness in practice by simply sticking them around target objects. Extensive experiments show that we outperform others by large margins (improve 20+\% accuracy for both adversarial and corruption robustness on average in the digital and physical world). Our codes are available at https://github.com/nlsde-safety-team/DefensivePatch
Abstract:Prohibited items detection in X-ray images often plays an important role in protecting public safety, which often deals with color-monotonous and luster-insufficient objects, resulting in unsatisfactory performance. Till now, there have been rare studies touching this topic due to the lack of specialized high-quality datasets. In this work, we first present a High-quality X-ray (HiXray) security inspection image dataset, which contains 102,928 common prohibited items of 8 categories. It is the largest dataset of high quality for prohibited items detection, gathered from the real-world airport security inspection and annotated by professional security inspectors. Besides, for accurate prohibited item detection, we further propose the Lateral Inhibition Module (LIM) inspired by the fact that humans recognize these items by ignoring irrelevant information and focusing on identifiable characteristics, especially when objects are overlapped with each other. Specifically, LIM, the elaborately designed flexible additional module, suppresses the noisy information flowing maximumly by the Bidirectional Propagation (BP) module and activates the most identifiable charismatic, boundary, from four directions by Boundary Activation (BA) module. We evaluate our method extensively on HiXray and OPIXray and the results demonstrate that it outperforms SOTA detection methods.
Abstract:Learning from multiple annotators aims to induce a high-quality classifier from training instances, where each of them is associated with a set of possibly noisy labels provided by multiple annotators under the influence of their varying abilities and own biases. In modeling the probability transition process from latent true labels to observed labels, most existing methods adopt class-level confusion matrices of annotators that observed labels do not depend on the instance features, just determined by the true labels. It may limit the performance that the classifier can achieve. In this work, we propose the noise transition matrix, which incorporates the influence of instance features on annotators' performance based on confusion matrices. Furthermore, we propose a simple yet effective learning framework, which consists of a classifier module and a noise transition matrix module in a unified neural network architecture. Experimental results demonstrate the superiority of our method in comparison with state-of-the-art methods.
Abstract:Few-shot learning is an interesting and challenging study, which enables machines to learn from few samples like humans. Existing studies rarely exploit auxiliary information from large amount of unlabeled data. Self-supervised learning is emerged as an efficient method to utilize unlabeled data. Existing self-supervised learning methods always rely on the combination of geometric transformations for the single sample by augmentation, while seriously neglect the endogenous correlation information among different samples that is the same important for the task. In this work, we propose a Graph-driven Clustering (GC), a novel augmentation-free method for self-supervised learning, which does not rely on any auxiliary sample and utilizes the endogenous correlation information among input samples. Besides, we propose Multi-pretext Attention Network (MAN), which exploits a specific attention mechanism to combine the traditional augmentation-relied methods and our GC, adaptively learning their optimized weights to improve the performance and enabling the feature extractor to obtain more universal representations. We evaluate our MAN extensively on miniImageNet and tieredImageNet datasets and the results demonstrate that the proposed method outperforms the state-of-the-art (SOTA) relevant methods.
Abstract:Quantization has emerged as one of the most prevalent approaches to compress and accelerate neural networks. Recently, data-free quantization has been widely studied as a practical and promising solution. It synthesizes data for calibrating the quantized model according to the batch normalization (BN) statistics of FP32 ones and significantly relieves the heavy dependency on real training data in traditional quantization methods. Unfortunately, we find that in practice, the synthetic data identically constrained by BN statistics suffers serious homogenization at both distribution level and sample level and further causes a significant performance drop of the quantized model. We propose Diverse Sample Generation (DSG) scheme to mitigate the adverse effects caused by homogenization. Specifically, we slack the alignment of feature statistics in the BN layer to relax the constraint at the distribution level and design a layerwise enhancement to reinforce specific layers for different data samples. Our DSG scheme is versatile and even able to be applied to the state-of-the-art post-training quantization method like AdaRound. We evaluate the DSG scheme on the large-scale image classification task and consistently obtain significant improvements over various network architectures and quantization methods, especially when quantized to lower bits (e.g., up to 22% improvement on W4A4). Moreover, benefiting from the enhanced diversity, models calibrated by synthetic data perform close to those calibrated by real data and even outperform them on W4A4.
Abstract:Security inspection is X-ray scanning for personal belongings in suitcases, which is significantly important for the public security but highly time-consuming for human inspectors. Fortunately, deep learning has greatly promoted the development of computer vision, offering a possible way of automatic security inspection. However, items within a luggage are randomly overlapped resulting in noisy X-ray images with heavy occlusions. Thus, traditional CNN-based models trained through common image recognition datasets fail to achieve satisfactory performance in this scenario. To address these problems, we contribute the first high-quality prohibited X-ray object detection dataset named OPIXray, which contains 8885 X-ray images from 5 categories of the widely-occurred prohibited item ``cutters''. The images are gathered from an airport and these prohibited items are annotated manually by professional inspectors, which can be used as a benchmark for model training and further facilitate future research. To better improve occluded X-ray object detection, we further propose an over-sampling de-occlusion attention network (DOAM-O), which consists of a novel de-occlusion attention module and a new over-sampling training strategy. Specifically, our de-occlusion module, namely DOAM, simultaneously leverages the different appearance information of the prohibited items; the over-sampling training strategy forces the model to put more emphasis on these hard samples consisting these items of high occlusion levels, which is more suitable for this scenario. We comprehensively evaluated DOAM-O on the OPIXray dataset, which proves that our model can stably improve the performance of the famous detection models such as SSD, YOLOv3, and FCOS, and outperform many extensively-used attention mechanisms.