Abstract:Although diffusion models have achieved remarkable success in the field of image generation, their latent space remains under-explored. Current methods for identifying semantics within latent space often rely on external supervision, such as textual information and segmentation masks. In this paper, we propose a method to identify semantic attributes in the latent space of pre-trained diffusion models without any further training. By projecting the Jacobian of the targeted semantic region into a low-dimensional subspace which is orthogonal to the non-masked regions, our approach facilitates precise semantic discovery and control over local masked areas, eliminating the need for annotations. We conducted extensive experiments across multiple datasets and various architectures of diffusion models, achieving state-of-the-art performance. In particular, for some specific face attributes, the performance of our proposed method even surpasses that of supervised approaches, demonstrating its superior ability in editing local image properties.
Abstract:Diffusion models have received wide attention in generation tasks. However, the expensive computation cost prevents the application of diffusion models in resource-constrained scenarios. Quantization emerges as a practical solution that significantly saves storage and computation by reducing the bit-width of parameters. However, the existing quantization methods for diffusion models still cause severe degradation in performance, especially under extremely low bit-widths (2-4 bit). The primary decrease in performance comes from the significant discretization of activation values at low bit quantization. Too few activation candidates are unfriendly for outlier significant weight channel quantization, and the discretized features prevent stable learning over different time steps of the diffusion model. This paper presents MPQ-DM, a Mixed-Precision Quantization method for Diffusion Models. The proposed MPQ-DM mainly relies on two techniques:(1) To mitigate the quantization error caused by outlier severe weight channels, we propose an Outlier-Driven Mixed Quantization (OMQ) technique that uses $Kurtosis$ to quantify outlier salient channels and apply optimized intra-layer mixed-precision bit-width allocation to recover accuracy performance within target efficiency.(2) To robustly learn representations crossing time steps, we construct a Time-Smoothed Relation Distillation (TRD) scheme between the quantized diffusion model and its full-precision counterpart, transferring discrete and continuous latent to a unified relation space to reduce the representation inconsistency. Comprehensive experiments demonstrate that MPQ-DM achieves significant accuracy gains under extremely low bit-widths compared with SOTA quantization methods. MPQ-DM achieves a 58\% FID decrease under W2A4 setting compared with baseline, while all other methods even collapse.
Abstract:The various post-processing methods for deep-learning-based models, such as quantification, pruning, and fine-tuning, play an increasingly important role in artificial intelligence technology, with pre-train large models as one of the main development directions. However, this popular series of post-processing behaviors targeting pre-training deep models has become a breeding ground for new adversarial security issues. In this study, we take the first step towards ``behavioral backdoor'' attack, which is defined as a behavior-triggered backdoor model training procedure, to reveal a new paradigm of backdoor attacks. In practice, we propose the first pipeline of implementing behavior backdoor, i.e., the Quantification Backdoor (QB) attack, upon exploiting model quantification method as the set trigger. Specifically, to adapt the optimization goal of behavior backdoor, we introduce the behavior-driven backdoor object optimizing method by a bi-target behavior backdoor training loss, thus we could guide the poisoned model optimization direction. To update the parameters across multiple models, we adopt the address-shared backdoor model training, thereby the gradient information could be utilized for multimodel collaborative optimization. Extensive experiments have been conducted on different models, datasets, and tasks, demonstrating the effectiveness of this novel backdoor attack and its potential application threats.
Abstract:Prohibited item detection is crucial for ensuring public safety, yet current X-ray image-based detection methods often lack comprehensive data-driven exploration. This paper introduces a novel data augmentation approach tailored for prohibited item detection, leveraging unique characteristics inherent to X-ray imagery. Our method is motivated by observations of physical properties including: 1) X-ray Transmission Imagery: Unlike reflected light images, transmitted X-ray pixels represent composite information from multiple materials along the imaging path. 2) Material-based Pseudo-coloring: Pseudo-color rendering in X-ray images correlates directly with material properties, aiding in material distinction. Building on a novel perspective from physical properties, we propose a simple yet effective X-ray image augmentation technique, Background Mixup (BGM), for prohibited item detection in security screening contexts. The essence is the rich background simulation of X-ray images to induce the model to increase its attention to the foreground. The approach introduces 1) contour information of baggage and 2) variation of material information into the original image by Mixup at patch level. Background Mixup is plug-and-play, parameter-free, highly generalizable and provides an effective solution to the limitations of classical visual augmentations in non-reflected light imagery. When implemented with different high-performance detectors, our augmentation method consistently boosts performance across diverse X-ray datasets from various devices and environments. Extensive experimental results demonstrate that our approach surpasses strong baselines while maintaining similar training resources.
Abstract:The detection of prohibited items in X-ray security inspections is vital for ensuring public safety. However, the long-tail distribution of item categories, where certain prohibited items are far less common, poses a big challenge for detection models, as rare categories often lack sufficient training data. Existing methods struggle to classify these rare items accurately due to this imbalance. In this paper, we propose a Dual-level Boost Network (DBNet) specifically designed to overcome these challenges in X-ray security screening. Our approach introduces two key innovations: (1) a specific data augmentation strategy employing Poisson blending, inspired by the characteristics of X-ray images, to generate realistic synthetic instances of rare items which can effectively mitigate data imbalance; and (2) a context-aware feature enhancement module that captures the spatial and semantic interactions between objects and their surroundings, enhancing classification accuracy for underrepresented categories. Extensive experimental results demonstrate that DBNet improves detection performance for tail categories, outperforming sota methods in X-ray security inspection scenarios by a large margin 17.2%, thereby ensuring enhanced public safety.
Abstract:To detect prohibited items in challenging categories, human inspectors typically rely on images from two distinct views (vertical and side). Can AI detect prohibited items from dual-view X-ray images in the same way humans do? Existing X-ray datasets often suffer from limitations, such as single-view imaging or insufficient sample diversity. To address these gaps, we introduce the Large-scale Dual-view X-ray (LDXray), which consists of 353,646 instances across 12 categories, providing a diverse and comprehensive resource for training and evaluating models. To emulate human intelligence in dual-view detection, we propose the Auxiliary-view Enhanced Network (AENet), a novel detection framework that leverages both the main and auxiliary views of the same object. The main-view pipeline focuses on detecting common categories, while the auxiliary-view pipeline handles more challenging categories using ``expert models" learned from the main view. Extensive experiments on the LDXray dataset demonstrate that the dual-view mechanism significantly enhances detection performance, e.g., achieving improvements of up to 24.7% for the challenging category of umbrellas. Furthermore, our results show that AENet exhibits strong generalization across seven different detection models for X-ray Inspection
Abstract:Despite significant advances in deepfake detection, handling varying image quality, especially due to different compressions on online social networks (OSNs), remains challenging. Current methods succeed by leveraging correlations between paired images, whether raw or compressed. However, in open-world scenarios, paired data is scarce, with compressed images readily available but corresponding raw versions difficult to obtain. This imbalance, where unpaired data vastly outnumbers paired data, often leads to reduced detection performance, as existing methods struggle without corresponding raw images. To overcome this issue, we propose a novel approach named the open-world deepfake detection network (ODDN), which comprises two core modules: open-world data aggregation (ODA) and compression-discard gradient correction (CGC). ODA effectively aggregates correlations between compressed and raw samples through both fine-grained and coarse-grained analyses for paired and unpaired data, respectively. CGC incorporates a compression-discard gradient correction to further enhance performance across diverse compression methods in OSN. This technique optimizes the training gradient to ensure the model remains insensitive to compression variations. Extensive experiments conducted on 17 popular deepfake datasets demonstrate the superiority of the ODDN over SOTA baselines.
Abstract:While neural machine translation (NMT) models achieve success in our daily lives, they show vulnerability to adversarial attacks. Despite being harmful, these attacks also offer benefits for interpreting and enhancing NMT models, thus drawing increased research attention. However, existing studies on adversarial attacks are insufficient in both attacking ability and human imperceptibility due to their sole focus on the scope of language. This paper proposes a novel vision-fused attack (VFA) framework to acquire powerful adversarial text, i.e., more aggressive and stealthy. Regarding the attacking ability, we design the vision-merged solution space enhancement strategy to enlarge the limited semantic solution space, which enables us to search for adversarial candidates with higher attacking ability. For human imperceptibility, we propose the perception-retained adversarial text selection strategy to align the human text-reading mechanism. Thus, the finally selected adversarial text could be more deceptive. Extensive experiments on various models, including large language models (LLMs) like LLaMA and GPT-3.5, strongly support that VFA outperforms the comparisons by large margins (up to 81%/14% improvements on ASR/SSIM).
Abstract:This work focuses on AIGC detection to develop universal detectors capable of identifying various types of forgery images. Recent studies have found large pre-trained models, such as CLIP, are effective for generalizable deepfake detection along with linear classifiers. However, two critical issues remain unresolved: 1) understanding why CLIP features are effective on deepfake detection through a linear classifier; and 2) exploring the detection potential of CLIP. In this study, we delve into the underlying mechanisms of CLIP's detection capabilities by decoding its detection features into text and performing word frequency analysis. Our finding indicates that CLIP detects deepfakes by recognizing similar concepts (Fig. \ref{fig:fig1} a). Building on this insight, we introduce Category Common Prompt CLIP, called C2P-CLIP, which integrates the category common prompt into the text encoder to inject category-related concepts into the image encoder, thereby enhancing detection performance (Fig. \ref{fig:fig1} b). Our method achieves a 12.41\% improvement in detection accuracy compared to the original CLIP, without introducing additional parameters during testing. Comprehensive experiments conducted on two widely-used datasets, encompassing 20 generation models, validate the efficacy of the proposed method, demonstrating state-of-the-art performance. The code is available at \url{https://github.com/chuangchuangtan/C2P-CLIP-DeepfakeDetection}
Abstract:Adversarial attacks are valuable for evaluating the robustness of deep learning models. Existing attacks are primarily conducted on the visible light spectrum (e.g., pixel-wise texture perturbation). However, attacks targeting texture-free X-ray images remain underexplored, despite the widespread application of X-ray imaging in safety-critical scenarios such as the X-ray detection of prohibited items. In this paper, we take the first step toward the study of adversarial attacks targeted at X-ray prohibited item detection, and reveal the serious threats posed by such attacks in this safety-critical scenario. Specifically, we posit that successful physical adversarial attacks in this scenario should be specially designed to circumvent the challenges posed by color/texture fading and complex overlapping. To this end, we propose X-adv to generate physically printable metals that act as an adversarial agent capable of deceiving X-ray detectors when placed in luggage. To resolve the issues associated with color/texture fading, we develop a differentiable converter that facilitates the generation of 3D-printable objects with adversarial shapes, using the gradients of a surrogate model rather than directly generating adversarial textures. To place the printed 3D adversarial objects in luggage with complex overlapped instances, we design a policy-based reinforcement learning strategy to find locations eliciting strong attack performance in worst-case scenarios whereby the prohibited items are heavily occluded by other items. To verify the effectiveness of the proposed X-Adv, we conduct extensive experiments in both the digital and the physical world (employing a commercial X-ray security inspection system for the latter case). Furthermore, we present the physical-world X-ray adversarial attack dataset XAD.