Abstract:Riemannian neural networks, which extend deep learning techniques to Riemannian spaces, have gained significant attention in machine learning. To better classify the manifold-valued features, researchers have started extending Euclidean multinomial logistic regression (MLR) into Riemannian manifolds. However, existing approaches suffer from limited applicability due to their strong reliance on specific geometric properties. This paper proposes a framework for designing Riemannian MLR over general geometries, referred to as RMLR. Our framework only requires minimal geometric properties, thus exhibiting broad applicability and enabling its use with a wide range of geometries. Specifically, we showcase our framework on the Symmetric Positive Definite (SPD) manifold and special orthogonal group, i.e., the set of rotation matrices. On the SPD manifold, we develop five families of SPD MLRs under five types of power-deformed metrics. On rotation matrices we propose Lie MLR based on the popular bi-invariant metric. Extensive experiments on different Riemannian backbone networks validate the effectiveness of our framework.
Abstract:Global Covariance Pooling (GCP) has been demonstrated to improve the performance of Deep Neural Networks (DNNs) by exploiting second-order statistics of high-level representations. GCP typically performs classification of the covariance matrices by applying matrix function normalization, such as matrix logarithm or power, followed by a Euclidean classifier. However, covariance matrices inherently lie in a Riemannian manifold, known as the Symmetric Positive Definite (SPD) manifold. The current literature does not provide a satisfactory explanation of why Euclidean classifiers can be applied directly to Riemannian features after the normalization of the matrix power. To mitigate this gap, this paper provides a comprehensive and unified understanding of the matrix logarithm and power from a Riemannian geometry perspective. The underlying mechanism of matrix functions in GCP is interpreted from two perspectives: one based on tangent classifiers (Euclidean classifiers on the tangent space) and the other based on Riemannian classifiers. Via theoretical analysis and empirical validation through extensive experiments on fine-grained and large-scale visual classification datasets, we conclude that the working mechanism of the matrix functions should be attributed to the Riemannian classifiers they implicitly respect.
Abstract:This paper presents two new metrics on the Symmetric Positive Definite (SPD) manifold via the Cholesky manifold, i.e., the space of lower triangular matrices with positive diagonal elements. We first unveil that the existing popular Riemannian metric on the Cholesky manifold can be generally characterized as the product metric of a Euclidean metric and a Riemannian metric on the space of n-dimensional positive vectors. Based on this analysis, we propose two novel metrics on the Cholesky manifolds, i.e., Diagonal Power Euclidean Metric and Diagonal Generalized Bures-Wasserstein Metric, which are numerically stabler than the existing Cholesky metric. We also discuss the gyro structures and deformed metrics associated with our metrics. The gyro structures connect the linear and geometric properties, while the deformed metrics interpolate between our proposed metrics and the existing metric. Further, by Cholesky decomposition, the proposed deformed metrics and gyro structures are pulled back to SPD manifolds. Compared with existing Riemannian metrics on SPD manifolds, our metrics are easy to use, computationally efficient, and numerically stable.
Abstract:Recent progress of deep generative models in the vision and language domain has stimulated significant interest in more structured data generation such as molecules. However, beyond generating new random molecules, efficient exploration and a comprehensive understanding of the vast chemical space are of great importance to molecular science and applications in drug design and materials discovery. In this paper, we propose a new framework, ChemFlow, to traverse chemical space through navigating the latent space learned by molecule generative models through flows. We introduce a dynamical system perspective that formulates the problem as learning a vector field that transports the mass of the molecular distribution to the region with desired molecular properties or structure diversity. Under this framework, we unify previous approaches on molecule latent space traversal and optimization and propose alternative competing methods incorporating different physical priors. We validate the efficacy of ChemFlow on molecule manipulation and single- and multi-objective molecule optimization tasks under both supervised and unsupervised molecular discovery settings. Codes and demos are publicly available on GitHub at https://github.com/garywei944/ChemFlow.
Abstract:Manifold-valued measurements exist in numerous applications within computer vision and machine learning. Recent studies have extended Deep Neural Networks (DNNs) to manifolds, and concomitantly, normalization techniques have also been adapted to several manifolds, referred to as Riemannian normalization. Nonetheless, most of the existing Riemannian normalization methods have been derived in an ad hoc manner and only apply to specific manifolds. This paper establishes a unified framework for Riemannian Batch Normalization (RBN) techniques on Lie groups. Our framework offers the theoretical guarantee of controlling both the Riemannian mean and variance. Empirically, we focus on Symmetric Positive Definite (SPD) manifolds, which possess three distinct types of Lie group structures. Using the deformation concept, we generalize the existing Lie groups on SPD manifolds into three families of parameterized Lie groups. Specific normalization layers induced by these Lie groups are then proposed for SPD neural networks. We demonstrate the effectiveness of our approach through three sets of experiments: radar recognition, human action recognition, and electroencephalography (EEG) classification. The code is available at https://github.com/GitZH-Chen/LieBN.git.
Abstract:This paper explores a new post-hoc training-free compression paradigm for compressing Large Language Models (LLMs) to facilitate their wider adoption in various computing environments. We delve into the challenges of LLM compression, notably their dependency on extensive training data and computational resources. We propose a training-free approach dubbed Activation-aware Singular Value Decomposition (ASVD) to address these limitations. ASVD effectively manages activation outliers by adjusting the weight matrix based on the activation distribution, improving decomposition accuracy and efficiency. Our method also addresses the varying sensitivity of different LLM layers to decomposition, with an iterative calibration process for optimal layer-specific decomposition. Experiments demonstrate that ASVD can compress network by 10%-20% without losing reasoning capacities. Additionally, it can be seamlessly integrated with other LLM compression paradigms, showcasing its flexible compatibility. Code and compressed models are available at https://github.com/hahnyuan/ASVD4LLM.
Abstract:The task of out-of-distribution (OOD) detection is crucial for deploying machine learning models in real-world settings. In this paper, we observe that the singular value distributions of the in-distribution (ID) and OOD features are quite different: the OOD feature matrix tends to have a larger dominant singular value than the ID feature, and the class predictions of OOD samples are largely determined by it. This observation motivates us to propose \texttt{RankFeat}, a simple yet effective \emph{post hoc} approach for OOD detection by removing the rank-1 matrix composed of the largest singular value and the associated singular vectors from the high-level feature. \texttt{RankFeat} achieves \emph{state-of-the-art} performance and reduces the average false positive rate (FPR95) by 17.90\% compared with the previous best method. The success of \texttt{RankFeat} motivates us to investigate whether a similar phenomenon would exist in the parameter matrices of neural networks. We thus propose \texttt{RankWeight} which removes the rank-1 weight from the parameter matrices of a single deep layer. Our \texttt{RankWeight}is also \emph{post hoc} and only requires computing the rank-1 matrix once. As a standalone approach, \texttt{RankWeight} has very competitive performance against other methods across various backbones. Moreover, \texttt{RankWeight} enjoys flexible compatibility with a wide range of OOD detection methods. The combination of \texttt{RankWeight} and \texttt{RankFeat} refreshes the new \emph{state-of-the-art} performance, achieving the FPR95 as low as 16.13\% on the ImageNet-1k benchmark. Extensive ablation studies and comprehensive theoretical analyses are presented to support the empirical results.
Abstract:A prominent goal of representation learning research is to achieve representations which are factorized in a useful manner with respect to the ground truth factors of variation. The fields of disentangled and equivariant representation learning have approached this ideal from a range of complimentary perspectives; however, to date, most approaches have proven to either be ill-specified or insufficiently flexible to effectively separate all realistic factors of interest in a learned latent space. In this work, we propose an alternative viewpoint on such structured representation learning which we call Flow Factorized Representation Learning, and demonstrate it to learn both more efficient and more usefully structured representations than existing frameworks. Specifically, we introduce a generative model which specifies a distinct set of latent probability paths that define different input transformations. Each latent flow is generated by the gradient field of a learned potential following dynamic optimal transport. Our novel setup brings new understandings to both \textit{disentanglement} and \textit{equivariance}. We show that our model achieves higher likelihoods on standard representation learning benchmarks while simultaneously being closer to approximately equivariant models. Furthermore, we demonstrate that the transformations learned by our model are flexibly composable and can also extrapolate to new data, implying a degree of robustness and generalizability approaching the ultimate goal of usefully factorized representation learning.
Abstract:Generative Adversarial Networks (GANs), especially the recent style-based generators (StyleGANs), have versatile semantics in the structured latent space. Latent semantics discovery methods emerge to move around the latent code such that only one factor varies during the traversal. Recently, an unsupervised method proposed a promising direction to directly use the eigenvectors of the projection matrix that maps latent codes to features as the interpretable directions. However, one overlooked fact is that the projection matrix is non-orthogonal and the number of eigenvectors is too large. The non-orthogonality would entangle semantic attributes in the top few eigenvectors, and the large dimensionality might result in meaningless variations among the directions even if the matrix is orthogonal. To avoid these issues, we propose Householder Projector, a flexible and general low-rank orthogonal matrix representation based on Householder transformations, to parameterize the projection matrix. The orthogonality guarantees that the eigenvectors correspond to disentangled interpretable semantics, while the low-rank property encourages that each identified direction has meaningful variations. We integrate our projector into pre-trained StyleGAN2/StyleGAN3 and evaluate the models on several benchmarks. Within only $1\%$ of the original training steps for fine-tuning, our projector helps StyleGANs to discover more disentangled and precise semantic attributes without sacrificing image fidelity.
Abstract:Deep neural networks for learning symmetric positive definite (SPD) matrices are gaining increasing attention in machine learning. Despite the significant progress, most existing SPD networks use traditional Euclidean classifiers on approximated spaces rather than intrinsic classifiers that accurately capture the geometry of SPD manifolds. Inspired by the success of hyperbolic neural networks (HNNs), we propose Riemannian multiclass logistics regression (RMLR) for SPD networks. We introduce a general unified framework for a family of Riemannian metrics on SPD manifolds and showcase the specific $\orth{n}$-invariant Log-Euclidean Metrics for SPD networks. Moreover, we encompass the most popular classifier in existing SPD networks as a special case of our framework. Extensive experiments on popular SPD learning benchmarks demonstrate the superiority of our classifiers.