Abstract:Accurate and timely seizure detection from Electroencephalography (EEG) is critical for clinical intervention, yet manual review of long-term recordings is labor-intensive. Recent efforts to encode EEG signals into large language models (LLMs) show promise in handling neural signals across diverse patients, but two significant challenges remain: (1) multi-channel heterogeneity, as seizure-relevant information varies substantially across EEG channels, and (2) computing inefficiency, as the EEG signals need to be encoded into a massive number of tokens for the prediction. To address these issues, we draw the EEG signal and propose the novel NeuroCanvas framework. Specifically, NeuroCanvas consists of two modules: (i) The Entropy-guided Channel Selector (ECS) selects the seizure-relevant channels input to LLM and (ii) the following Canvas of Neuron Signal (CNS) converts selected multi-channel heterogeneous EEG signals into structured visual representations. The ECS module alleviates the multi-channel heterogeneity issue, and the CNS uses compact visual tokens to represent the EEG signals that improve the computing efficiency. We evaluate NeuroCanvas across multiple seizure detection datasets, demonstrating a significant improvement of $20\%$ in F1 score and reductions of $88\%$ in inference latency. These results highlight NeuroCanvas as a scalable and effective solution for real-time and resource-efficient seizure detection in clinical practice.The code will be released at https://github.com/Yanchen30247/seizure_detect.
Abstract:Recent electroencephalography (EEG) spatial super-resolution (SR) methods, while showing improved quality by either directly predicting missing signals from visible channels or adapting latent diffusion-based generative modeling to temporal data, often lack awareness of physiological spatial structure, thereby constraining spatial generation performance. To address this issue, we introduce TopoDiff, a geometry- and relation-aware diffusion model for EEG spatial super-resolution. Inspired by how human experts interpret spatial EEG patterns, TopoDiff incorporates topology-aware image embeddings derived from EEG topographic representations to provide global geometric context for spatial generation, together with a dynamic channel-relation graph that encodes inter-electrode relationships and evolves with temporal dynamics. This design yields a spatially grounded EEG spatial super-resolution framework with consistent performance improvements. Across multiple EEG datasets spanning diverse applications, including SEED/SEED-IV for emotion recognition, PhysioNet motor imagery (MI/MM), and TUSZ for seizure detection, our method achieves substantial gains in generation fidelity and leads to notable improvements in downstream EEG task performance.
Abstract:Manifold-valued measurements exist in numerous applications within computer vision and machine learning. Recent studies have extended Deep Neural Networks (DNNs) to manifolds, and concomitantly, normalization techniques have also been adapted to several manifolds, referred to as Riemannian normalization. Nonetheless, most of the existing Riemannian normalization methods have been derived in an ad hoc manner and only apply to specific manifolds. This paper establishes a unified framework for Riemannian Batch Normalization (RBN) techniques on Lie groups. Our framework offers the theoretical guarantee of controlling both the Riemannian mean and variance. Empirically, we focus on Symmetric Positive Definite (SPD) manifolds, which possess three distinct types of Lie group structures. Using the deformation concept, we generalize the existing Lie groups on SPD manifolds into three families of parameterized Lie groups. Specific normalization layers induced by these Lie groups are then proposed for SPD neural networks. We demonstrate the effectiveness of our approach through three sets of experiments: radar recognition, human action recognition, and electroencephalography (EEG) classification. The code is available at https://github.com/GitZH-Chen/LieBN.git.