Abstract:Continual learning (CL) is designed to learn new tasks while preserving existing knowledge. Replaying samples from earlier tasks has proven to be an effective method to mitigate the forgetting of previously acquired knowledge. However, the current research on the training efficiency of rehearsal-based methods is insufficient, which limits the practical application of CL systems in resource-limited scenarios. The human visual system (HVS) exhibits varying sensitivities to different frequency components, enabling the efficient elimination of visually redundant information. Inspired by HVS, we propose a novel framework called Continual Learning in the Frequency Domain (CLFD). To our knowledge, this is the first study to utilize frequency domain features to enhance the performance and efficiency of CL training on edge devices. For the input features of the feature extractor, CLFD employs wavelet transform to map the original input image into the frequency domain, thereby effectively reducing the size of input feature maps. Regarding the output features of the feature extractor, CLFD selectively utilizes output features for distinct classes for classification, thereby balancing the reusability and interference of output features based on the frequency domain similarity of the classes across various tasks. Optimizing only the input and output features of the feature extractor allows for seamless integration of CLFD with various rehearsal-based methods. Extensive experiments conducted in both cloud and edge environments demonstrate that CLFD consistently improves the performance of state-of-the-art (SOTA) methods in both precision and training efficiency. Specifically, CLFD can increase the accuracy of the SOTA CL method by up to 6.83% and reduce the training time by 2.6$\times$.
Abstract:Incremental object detection aims to simultaneously maintain old-class accuracy and detect emerging new-class objects in incremental data. Most existing distillation-based methods underperform when unlabeled old-class objects are absent in the incremental dataset. While the absence can be mitigated by generating old-class samples, it also incurs high computational costs. In this paper, we argue that the extra computational cost stems from the inconsistency between the detector and the generative model, along with redundant generation. To overcome this problem, we propose Efficient Generated Object Replay (EGOR). Specifically, we generate old-class samples by inversing the original detectors, thus eliminating the necessity of training and storing additional generative models. We also propose augmented replay to reuse the objects in generated samples, thereby reducing the redundant generation. In addition, we propose high-response knowledge distillation focusing on the knowledge related to the old class, which transfers the knowledge in generated objects to the incremental detector. With the addition of the generated objects and losses, we observe a bias towards old classes in the detector. We balance the losses for old and new classes to alleviate the bias, thereby increasing the overall detection accuracy. Extensive experiments conducted on MS COCO 2017 demonstrate that our method can efficiently improve detection performance in the absence of old-class objects.