Abstract:In online continual learning (CL), models trained on changing distributions easily forget previously learned knowledge and bias toward newly received tasks. To address this issue, we present Continual Bias Adaptor (CBA), a bi-level framework that augments the classification network to adapt to catastrophic distribution shifts during training, enabling the network to achieve a stable consolidation of all seen tasks. However, the CBA module adjusts distribution shifts in a class-specific manner, exacerbating the stability gap issue and, to some extent, fails to meet the need for continual testing in online CL. To mitigate this challenge, we further propose a novel class-agnostic CBA module that separately aggregates the posterior probabilities of classes from new and old tasks, and applies a stable adjustment to the resulting posterior probabilities. We combine the two kinds of CBA modules into a unified Dual-CBA module, which thus is capable of adapting to catastrophic distribution shifts and simultaneously meets the real-time testing requirements of online CL. Besides, we propose Incremental Batch Normalization (IBN), a tailored BN module to re-estimate its population statistics for alleviating the feature bias arising from the inner loop optimization problem of our bi-level framework. To validate the effectiveness of the proposed method, we theoretically provide some insights into how it mitigates catastrophic distribution shifts, and empirically demonstrate its superiority through extensive experiments based on four rehearsal-based baselines and three public continual learning benchmarks.
Abstract:Quantizing large language models (LLMs) presents significant challenges, primarily due to outlier activations that compromise the efficiency of low-bit representation. Traditional approaches mainly focus on solving Normal Outliers-activations with consistently high magnitudes across all tokens. However, these techniques falter when dealing with Massive Outliers, which are significantly higher in value and often cause substantial performance losses during low-bit quantization. In this study, we propose DuQuant, an innovative quantization strategy employing rotation and permutation transformations to more effectively eliminate both types of outliers. Initially, DuQuant constructs rotation matrices informed by specific outlier dimensions, redistributing these outliers across adjacent channels within different rotation blocks. Subsequently, a zigzag permutation is applied to ensure a balanced distribution of outliers among blocks, minimizing block-wise variance. An additional rotation further enhances the smoothness of the activation landscape, thereby improving model performance. DuQuant streamlines the quantization process and demonstrates superior outlier management, achieving top-tier results in multiple tasks with various LLM architectures even under 4-bit weight-activation quantization. Our code is available at https://github.com/Hsu1023/DuQuant.
Abstract:Image fusion aims to combine information from multiple source images into a single and more informative image. A major challenge for deep learning-based image fusion algorithms is the absence of a definitive ground truth and distance measurement. Thus, the manually specified loss functions aiming to steer the model learning, include hyperparameters that need to be manually thereby limiting the model's flexibility and generalizability to unseen tasks. To overcome the limitations of designing loss functions for specific fusion tasks, we propose a unified meta-learning based fusion framework named ReFusion, which learns optimal fusion loss from reconstructing source images. ReFusion consists of a fusion module, a loss proposal module, and a reconstruction module. Compared with the conventional methods with fixed loss functions, ReFusion employs a parameterized loss function, which is dynamically adapted by the loss proposal module based on the specific fusion scene and task. To ensure that the fusion network preserves maximal information from the source images, makes it possible to reconstruct the original images from the fusion image, a meta-learning strategy is used to make the reconstruction loss continually refine the parameters of the loss proposal module. Adaptive updating is achieved by alternating between inter update, outer update, and fusion update, where the training of the three components facilitates each other. Extensive experiments affirm that our method can successfully adapt to diverse fusion tasks, including infrared-visible, multi-focus, multi-exposure, and medical image fusion problems. The code will be released.
Abstract:Online continual learning (CL) aims to learn new knowledge and consolidate previously learned knowledge from non-stationary data streams. Due to the time-varying training setting, the model learned from a changing distribution easily forgets the previously learned knowledge and biases toward the newly received task. To address this problem, we propose a Continual Bias Adaptor (CBA) module to augment the classifier network to adapt to catastrophic distribution change during training, such that the classifier network is able to learn a stable consolidation of previously learned tasks. In the testing stage, CBA can be removed which introduces no additional computation cost and memory overhead. We theoretically reveal the reason why the proposed method can effectively alleviate catastrophic distribution shifts, and empirically demonstrate its effectiveness through extensive experiments based on four rehearsal-based baselines and three public continual learning benchmarks.
Abstract:Exposure to bio-aerosols such as mold spores and pollen can lead to adverse health effects. There is a need for a portable and cost-effective device for long-term monitoring and quantification of various bio-aerosols. To address this need, we present a mobile and cost-effective label-free bio-aerosol sensor that takes holographic images of flowing particulate matter concentrated by a virtual impactor, which selectively slows down and guides particles larger than ~6 microns to fly through an imaging window. The flowing particles are illuminated by a pulsed laser diode, casting their inline holograms on a CMOS image sensor in a lens-free mobile imaging device. The illumination contains three short pulses with a negligible shift of the flowing particle within one pulse, and triplicate holograms of the same particle are recorded at a single frame before it exits the imaging field-of-view, revealing different perspectives of each particle. The particles within the virtual impactor are localized through a differential detection scheme, and a deep neural network classifies the aerosol type in a label-free manner, based on the acquired holographic images. We demonstrated the success of this mobile bio-aerosol detector with a virtual impactor using different types of pollen (i.e., bermuda, elm, oak, pine, sycamore, and wheat) and achieved a blind classification accuracy of 92.91%. This mobile and cost-effective device weighs ~700 g and can be used for label-free sensing and quantification of various bio-aerosols over extended periods since it is based on a cartridge-free virtual impactor that does not capture or immobilize particulate matter.
Abstract:The success of meta-learning on existing benchmarks is predicated on the assumption that the distribution of meta-training tasks covers meta-testing tasks. Frequent violation of the assumption in applications with either insufficient tasks or a very narrow meta-training task distribution leads to memorization or learner overfitting. Recent solutions have pursued augmentation of meta-training tasks, while it is still an open question to generate both correct and sufficiently imaginary tasks. In this paper, we seek an approach that up-samples meta-training tasks from the task representation via a task up-sampling network. Besides, the resulting approach named Adversarial Task Up-sampling (ATU) suffices to generate tasks that can maximally contribute to the latest meta-learner by maximizing an adversarial loss. On few-shot sine regression and image classification datasets, we empirically validate the marked improvement of ATU over state-of-the-art task augmentation strategies in the meta-testing performance and also the quality of up-sampled tasks.
Abstract:Various volatile aerosols have been associated with adverse health effects; however, characterization of these aerosols is challenging due to their dynamic nature. Here we present a method that directly measures the volatility of particulate matter (PM) using computational microscopy and deep learning. This method was applied to aerosols generated by electronic cigarettes (e-cigs), which vaporize a liquid mixture (e-liquid) that mainly consists of propylene glycol (PG), vegetable glycerin (VG), nicotine, and flavoring compounds. E-cig generated aerosols were recorded by a field-portable computational microscope, using an impaction-based air sampler. A lensless digital holographic microscope inside this mobile device continuously records the inline holograms of the collected particles. A deep learning-based algorithm is used to automatically reconstruct the microscopic images of e-cig generated particles from their holograms, and rapidly quantify their volatility. To evaluate the effects of e-liquid composition on aerosol dynamics, we measured the volatility of the particles generated by flavorless, nicotine-free e-liquids with various PG/VG volumetric ratios, revealing a negative correlation between the particles' volatility and the volumetric ratio of VG in the e-liquid. For a given PG/VG composition, the addition of nicotine dominated the evaporation dynamics of the e-cig aerosol and the aforementioned negative correlation was no longer observed. We also revealed that flavoring additives in e-liquids significantly decrease the volatility of e-cig aerosol. The presented holographic volatility measurement technique and the associated mobile device might provide new insights on the volatility of e-cig generated particles and can be applied to characterize various volatile PM.
Abstract:We present a virtual image refocusing method over an extended depth of field (DOF) enabled by cascaded neural networks and a double-helix point-spread function (DH-PSF). This network model, referred to as W-Net, is composed of two cascaded generator and discriminator network pairs. The first generator network learns to virtually refocus an input image onto a user-defined plane, while the second generator learns to perform a cross-modality image transformation, improving the lateral resolution of the output image. Using this W-Net model with DH-PSF engineering, we extend the DOF of a fluorescence microscope by ~20-fold. This approach can be applied to develop deep learning-enabled image reconstruction methods for localization microscopy techniques that utilize engineered PSFs to improve their imaging performance, including spatial resolution and volumetric imaging throughput.
Abstract:Recent deep neural networks (DNNs) can easily overfit to biased training data with noisy labels. Label correction strategy is commonly used to alleviate this issue by designing a method to identity suspected noisy labels and then correct them. Current approaches to correcting corrupted labels usually need certain pre-defined label correction rules or manually preset hyper-parameters. These fixed settings make it hard to apply in practice since the accurate label correction usually related with the concrete problem, training data and the temporal information hidden in dynamic iterations of training process. To address this issue, we propose a meta-learning model which could estimate soft labels through meta-gradient descent step under the guidance of noise-free meta data. By viewing the label correction procedure as a meta-process and using a meta-learner to automatically correct labels, we could adaptively obtain rectified soft labels iteratively according to current training problems without manually preset hyper-parameters. Besides, our method is model-agnostic and we can combine it with any other existing model with ease. Comprehensive experiments substantiate the superiority of our method in both synthetic and real-world problems with noisy labels compared with current SOTA label correction strategies.
Abstract:To alleviate the adverse effect of rain streaks in image processing tasks, CNN-based single image rain removal methods have been recently proposed. However, the performance of these deep learning methods largely relies on the covering range of rain shapes contained in the pre-collected training rainy-clean image pairs. This makes them easily trapped into the overfitting-to-the-training-samples issue and cannot finely generalize to practical rainy images with complex and diverse rain streaks. Against this generalization issue, this study proposes a new network architecture by enforcing the output residual of the network possess intrinsic rain structures. Such a structural residual setting guarantees the rain layer extracted by the network finely comply with the prior knowledge of general rain streaks, and thus regulates sound rain shapes capable of being well extracted from rainy images in both training and predicting stages. Such a general regularization function naturally leads to both its better training accuracy and testing generalization capability even for those non-seen rain configurations. Such superiority is comprehensively substantiated by experiments implemented on synthetic and real datasets both visually and quantitatively as compared with current state-of-the-art methods.