Abstract:Selective state space models (SSMs), such as Mamba, highly excel at capturing long-range dependencies in 1D sequential data, while their applications to 2D vision tasks still face challenges. Current visual SSMs often convert images into 1D sequences and employ various scanning patterns to incorporate local spatial dependencies. However, these methods are limited in effectively capturing the complex image spatial structures and the increased computational cost caused by the lengthened scanning paths. To address these limitations, we propose Spatial-Mamba, a novel approach that establishes neighborhood connectivity directly in the state space. Instead of relying solely on sequential state transitions, we introduce a structure-aware state fusion equation, which leverages dilated convolutions to capture image spatial structural dependencies, significantly enhancing the flow of visual contextual information. Spatial-Mamba proceeds in three stages: initial state computation in a unidirectional scan, spatial context acquisition through structure-aware state fusion, and final state computation using the observation equation. Our theoretical analysis shows that Spatial-Mamba unifies the original Mamba and linear attention under the same matrix multiplication framework, providing a deeper understanding of our method. Experimental results demonstrate that Spatial-Mamba, even with a single scan, attains or surpasses the state-of-the-art SSM-based models in image classification, detection and segmentation. Source codes and trained models can be found at $\href{https://github.com/EdwardChasel/Spatial-Mamba}{\text{this https URL}}$.
Abstract:This paper presents our winning approach for the MER-NOISE and MER-OV tracks of the MER2024 Challenge on multimodal emotion recognition. Our system leverages the advanced emotional understanding capabilities of Emotion-LLaMA to generate high-quality annotations for unlabeled samples, addressing the challenge of limited labeled data. To enhance multimodal fusion while mitigating modality-specific noise, we introduce Conv-Attention, a lightweight and efficient hybrid framework. Extensive experimentation vali-dates the effectiveness of our approach. In the MER-NOISE track, our system achieves a state-of-the-art weighted average F-score of 85.30%, surpassing the second and third-place teams by 1.47% and 1.65%, respectively. For the MER-OV track, our utilization of Emotion-LLaMA for open-vocabulary annotation yields an 8.52% improvement in average accuracy and recall compared to GPT-4V, securing the highest score among all participating large multimodal models. The code and model for Emotion-LLaMA are available at https://github.com/ZebangCheng/Emotion-LLaMA.
Abstract:Vision-and-Language Navigation (VLN) aims to develop embodied agents that navigate based on human instructions. However, current VLN frameworks often rely on static environments and optimal expert supervision, limiting their real-world applicability. To address this, we introduce Human-Aware Vision-and-Language Navigation (HA-VLN), extending traditional VLN by incorporating dynamic human activities and relaxing key assumptions. We propose the Human-Aware 3D (HA3D) simulator, which combines dynamic human activities with the Matterport3D dataset, and the Human-Aware Room-to-Room (HA-R2R) dataset, extending R2R with human activity descriptions. To tackle HA-VLN challenges, we present the Expert-Supervised Cross-Modal (VLN-CM) and Non-Expert-Supervised Decision Transformer (VLN-DT) agents, utilizing cross-modal fusion and diverse training strategies for effective navigation in dynamic human environments. A comprehensive evaluation, including metrics considering human activities, and systematic analysis of HA-VLN's unique challenges, underscores the need for further research to enhance HA-VLN agents' real-world robustness and adaptability. Ultimately, this work provides benchmarks and insights for future research on embodied AI and Sim2Real transfer, paving the way for more realistic and applicable VLN systems in human-populated environments.
Abstract:In the real world, documents are organized in different formats and varied modalities. Traditional retrieval pipelines require tailored document parsing techniques and content extraction modules to prepare input for indexing. This process is tedious, prone to errors, and has information loss. To this end, we propose Document Screenshot Embedding} (DSE), a novel retrieval paradigm that regards document screenshots as a unified input format, which does not require any content extraction preprocess and preserves all the information in a document (e.g., text, image and layout). DSE leverages a large vision-language model to directly encode document screenshots into dense representations for retrieval. To evaluate our method, we first craft the dataset of Wiki-SS, a 1.3M Wikipedia web page screenshots as the corpus to answer the questions from the Natural Questions dataset. In such a text-intensive document retrieval setting, DSE shows competitive effectiveness compared to other text retrieval methods relying on parsing. For example, DSE outperforms BM25 by 17 points in top-1 retrieval accuracy. Additionally, in a mixed-modality task of slide retrieval, DSE significantly outperforms OCR text retrieval methods by over 15 points in nDCG@10. These experiments show that DSE is an effective document retrieval paradigm for diverse types of documents. Model checkpoints, code, and Wiki-SS collection will be released.
Abstract:Large language models (LLMs) often hallucinate and lack the ability to provide attribution for their generations. Semi-parametric LMs, such as kNN-LM, approach these limitations by refining the output of an LM for a given prompt using its nearest neighbor matches in a non-parametric data store. However, these models often exhibit slow inference speeds and produce non-fluent texts. In this paper, we introduce Nearest Neighbor Speculative Decoding (NEST), a novel semi-parametric language modeling approach that is capable of incorporating real-world text spans of arbitrary length into the LM generations and providing attribution to their sources. NEST performs token-level retrieval at each inference step to compute a semi-parametric mixture distribution and identify promising span continuations in a corpus. It then uses an approximate speculative decoding procedure that accepts a prefix of the retrieved span or generates a new token. NEST significantly enhances the generation quality and attribution rate of the base LM across a variety of knowledge-intensive tasks, surpassing the conventional kNN-LM method and performing competitively with in-context retrieval augmentation. In addition, NEST substantially improves the generation speed, achieving a 1.8x speedup in inference time when applied to Llama-2-Chat 70B.
Abstract:Recent studies have demonstrated that the ability of dense retrieval models to generalize to target domains with different distributions is limited, which contrasts with the results obtained with interaction-based models. Prior attempts to mitigate this challenge involved leveraging adversarial learning and query generation approaches, but both approaches nevertheless resulted in limited improvements. In this paper, we propose to combine the query-generation approach with a self-supervision approach in which pseudo-relevance labels are automatically generated on the target domain. To accomplish this, a T5-3B model is utilized for pseudo-positive labeling, and meticulous hard negatives are chosen. We also apply this strategy on conversational dense retrieval model for conversational search. A similar pseudo-labeling approach is used, but with the addition of a query-rewriting module to rewrite conversational queries for subsequent labeling. This proposed approach enables a model's domain adaptation with real queries and documents from the target dataset. Experiments on standard dense retrieval and conversational dense retrieval models both demonstrate improvements on baseline models when they are fine-tuned on the pseudo-relevance labeled data.
Abstract:Despite the recent advances in unified image segmentation (IS), developing a unified video segmentation (VS) model remains a challenge. This is mainly because generic category-specified VS tasks need to detect all objects and track them across consecutive frames, while prompt-guided VS tasks require re-identifying the target with visual/text prompts throughout the entire video, making it hard to handle the different tasks with the same architecture. We make an attempt to address these issues and present a novel unified VS architecture, namely UniVS, by using prompts as queries. UniVS averages the prompt features of the target from previous frames as its initial query to explicitly decode masks, and introduces a target-wise prompt cross-attention layer in the mask decoder to integrate prompt features in the memory pool. By taking the predicted masks of entities from previous frames as their visual prompts, UniVS converts different VS tasks into prompt-guided target segmentation, eliminating the heuristic inter-frame matching process. Our framework not only unifies the different VS tasks but also naturally achieves universal training and testing, ensuring robust performance across different scenarios. UniVS shows a commendable balance between performance and universality on 10 challenging VS benchmarks, covering video instance, semantic, panoptic, object, and referring segmentation tasks. Code can be found at \url{https://github.com/MinghanLi/UniVS}.
Abstract:Recently, a few open-vocabulary methods have been proposed by employing a unified architecture to tackle generic segmentation and detection tasks. However, their performance still lags behind the task-specific models due to the conflict between different tasks, and their open-vocabulary capability is limited due to the inadequate use of CLIP. To address these challenges, we present a universal transformer-based framework, abbreviated as OpenSD, which utilizes the same architecture and network parameters to handle open-vocabulary segmentation and detection tasks. First, we introduce a decoder decoupled learning strategy to alleviate the semantic conflict between thing and staff categories so that each individual task can be learned more effectively under the same framework. Second, to better leverage CLIP for end-to-end segmentation and detection, we propose dual classifiers to handle the in-vocabulary domain and out-of-vocabulary domain, respectively. The text encoder is further trained to be region-aware for both thing and stuff categories through decoupled prompt learning, enabling them to filter out duplicated and low-quality predictions, which is important to end-to-end segmentation and detection. Extensive experiments are conducted on multiple datasets under various circumstances. The results demonstrate that OpenSD outperforms state-of-the-art open-vocabulary segmentation and detection methods in both closed- and open-vocabulary settings. Code is available at https://github.com/strongwolf/OpenSD
Abstract:Query expansion has been proved to be effective in improving recall and precision of first-stage retrievers, and yet its influence on a complicated, state-of-the-art cross-encoder ranker remains under-explored. We first show that directly applying the expansion techniques in the current literature to state-of-the-art neural rankers can result in deteriorated zero-shot performance. To this end, we propose GFF, a pipeline that includes a large language model and a neural ranker, to Generate, Filter, and Fuse query expansions more effectively in order to improve the zero-shot ranking metrics such as nDCG@10. Specifically, GFF first calls an instruction-following language model to generate query-related keywords through a reasoning chain. Leveraging self-consistency and reciprocal rank weighting, GFF further filters and combines the ranking results of each expanded query dynamically. By utilizing this pipeline, we show that GFF can improve the zero-shot nDCG@10 on BEIR and TREC DL 2019/2020. We also analyze different modelling choices in the GFF pipeline and shed light on the future directions in query expansion for zero-shot neural rankers.
Abstract:It is expensive and labour-extensive to label the pixel-wise object masks in a video. As a results, the amount of pixel-wise annotations in existing video instance segmentation (VIS) datasets is small, limiting the generalization capability of trained VIS models. An alternative but much cheaper solution is to use bounding boxes to label instances in videos. Inspired by the recent success of box-supervised image instance segmentation, we first adapt the state-of-the-art pixel-supervised VIS models to a box-supervised VIS (BoxVIS) baseline, and observe only slight performance degradation. We consequently propose to improve BoxVIS performance from two aspects. First, we propose a box-center guided spatial-temporal pairwise affinity (STPA) loss to predict instance masks for better spatial and temporal consistency. Second, we collect a larger scale box-annotated VIS dataset (BVISD) by consolidating the videos from current VIS benchmarks and converting images from the COCO dataset to short pseudo video clips. With the proposed BVISD and the STPA loss, our trained BoxVIS model demonstrates promising instance mask prediction performance. Specifically, it achieves 43.2\% and 29.0\% mask AP on the YouTube-VIS 2021 and OVIS valid sets, respectively, exhibiting comparable or even better generalization performance than state-of-the-art pixel-supervised VIS models by using only 16\% annotation time and cost. Codes and data of BoxVIS can be found at \url{https://github.com/MinghanLi/BoxVIS}.