Abstract:Object goal navigation (ObjectNav) is a fundamental task of embodied AI that requires the agent to find a target object in unseen environments. This task is particularly challenging as it demands both perceptual and cognitive processes for effective perception and decision-making. While perception has gained significant progress powered by the rapidly developed visual foundation models, the progress on the cognitive side remains limited to either implicitly learning from massive navigation demonstrations or explicitly leveraging pre-defined heuristic rules. Inspired by neuroscientific evidence that humans consistently update their cognitive states while searching for objects in unseen environments, we present CogNav, which attempts to model this cognitive process with the help of large language models. Specifically, we model the cognitive process with a finite state machine composed of cognitive states ranging from exploration to identification. The transitions between the states are determined by a large language model based on an online built heterogeneous cognitive map containing spatial and semantic information of the scene being explored. Extensive experiments on both synthetic and real-world environments demonstrate that our cognitive modeling significantly improves ObjectNav efficiency, with human-like navigation behaviors. In an open-vocabulary and zero-shot setting, our method advances the SOTA of the HM3D benchmark from 69.3% to 87.2%. The code and data will be released.
Abstract:Camera placement is crutial in multi-camera systems such as virtual reality, autonomous driving, and high-quality reconstruction. The camera placement challenge lies in the nonlinear nature of high-dimensional parameters and the unavailability of gradients for target functions like coverage and visibility. Consequently, most existing methods tackle this challenge by leveraging non-gradient-based optimization methods.In this work, we present a hybrid camera placement optimization approach that incorporates both gradient-based and non-gradient-based optimization methods. This design allows our method to enjoy the advantages of smooth optimization convergence and robustness from gradient-based and non-gradient-based optimization, respectively. To bridge the two disparate optimization methods, we propose a neural observation field, which implicitly encodes the coverage and observation quality. The neural observation field provides the measurements of the camera observations and corresponding gradients without the assumption of target scenes, making our method applicable to diverse scenarios, including 2D planar shapes, 3D objects, and room-scale 3D scenes.Extensive experiments on diverse datasets demonstrate that our method achieves state-of-the-art performance, while requiring only a fraction (8x less) of the typical computation time. Furthermore, we conducted a real-world experiment using a custom-built capture system, confirming the resilience of our approach to real-world environmental noise.
Abstract:A practical navigation agent must be capable of handling a wide range of interaction demands, such as following instructions, searching objects, answering questions, tracking people, and more. Existing models for embodied navigation fall short of serving as practical generalists in the real world, as they are often constrained by specific task configurations or pre-defined maps with discretized waypoints. In this work, we present Uni-NaVid, the first video-based vision-language-action (VLA) model designed to unify diverse embodied navigation tasks and enable seamless navigation for mixed long-horizon tasks in unseen real-world environments. Uni-NaVid achieves this by harmonizing the input and output data configurations for all commonly used embodied navigation tasks and thereby integrating all tasks in one model. For training Uni-NaVid, we collect 3.6 million navigation data samples in total from four essential navigation sub-tasks and foster synergy in learning across them. Extensive experiments on comprehensive navigation benchmarks clearly demonstrate the advantages of unification modeling in Uni-NaVid and show it achieves state-of-the-art performance. Additionally, real-world experiments confirm the model's effectiveness and efficiency, shedding light on its strong generalizability.
Abstract:Effectively manipulating articulated objects in household scenarios is a crucial step toward achieving general embodied artificial intelligence. Mainstream research in 3D vision has primarily focused on manipulation through depth perception and pose detection. However, in real-world environments, these methods often face challenges due to imperfect depth perception, such as with transparent lids and reflective handles. Moreover, they generally lack the diversity in part-based interactions required for flexible and adaptable manipulation. To address these challenges, we introduced a large-scale part-centric dataset for articulated object manipulation that features both photo-realistic material randomizations and detailed annotations of part-oriented, scene-level actionable interaction poses. We evaluated the effectiveness of our dataset by integrating it with several state-of-the-art methods for depth estimation and interaction pose prediction. Additionally, we proposed a novel modular framework that delivers superior and robust performance for generalizable articulated object manipulation. Our extensive experiments demonstrate that our dataset significantly improves the performance of depth perception and actionable interaction pose prediction in both simulation and real-world scenarios.
Abstract:Recent research on Vision-and-Language Navigation (VLN) indicates that agents suffer from poor generalization in unseen environments due to the lack of realistic training environments and high-quality path-instruction pairs. Most existing methods for constructing realistic navigation scenes have high costs, and the extension of instructions mainly relies on predefined templates or rules, lacking adaptability. To alleviate the issue, we propose InstruGen, a VLN path-instruction pairs generation paradigm. Specifically, we use YouTube house tour videos as realistic navigation scenes and leverage the powerful visual understanding and generation abilities of large multimodal models (LMMs) to automatically generate diverse and high-quality VLN path-instruction pairs. Our method generates navigation instructions with different granularities and achieves fine-grained alignment between instructions and visual observations, which was difficult to achieve with previous methods. Additionally, we design a multi-stage verification mechanism to reduce hallucinations and inconsistency of LMMs. Experimental results demonstrate that agents trained with path-instruction pairs generated by InstruGen achieves state-of-the-art performance on the R2R and RxR benchmarks, particularly in unseen environments. Code is available at https://github.com/yanyu0526/InstruGen.
Abstract:Vision-and-Language Navigation (VLN) stands as a key research problem of Embodied AI, aiming at enabling agents to navigate in unseen environments following linguistic instructions. In this field, generalization is a long-standing challenge, either to out-of-distribution scenes or from Sim to Real. In this paper, we propose NaVid, a video-based large vision language model (VLM), to mitigate such a generalization gap. NaVid makes the first endeavour to showcase the capability of VLMs to achieve state-of-the-art level navigation performance without any maps, odometer and depth inputs. Following human instruction, NaVid only requires an on-the-fly video stream from a monocular RGB camera equipped on the robot to output the next-step action. Our formulation mimics how humans navigate and naturally gets rid of the problems introduced by odometer noises, and the Sim2Real gaps from map or depth inputs. Moreover, our video-based approach can effectively encode the historical observations of robots as spatio-temporal contexts for decision-making and instruction following. We train NaVid with 550k navigation samples collected from VLN-CE trajectories, including action-planning and instruction-reasoning samples, along with 665k large-scale web data. Extensive experiments show that NaVid achieves SOTA performance in simulation environments and the real world, demonstrating superior cross-dataset and Sim2Real transfer. We thus believe our proposed VLM approach plans the next step for not only the navigation agents but also this research field.
Abstract:Choosing appropriate hyperparameters plays a crucial role in the success of neural networks as hyper-parameters directly control the behavior and performance of the training algorithms. To obtain efficient tuning, Bayesian optimization methods based on Gaussian process (GP) models are widely used. Despite numerous applications of Bayesian optimization in deep learning, the existing methodologies are developed based on a convenient but restrictive assumption that the tuning parameters are independent of each other. However, tuning parameters with conditional dependence are common in practice. In this paper, we focus on two types of them: branching and nested parameters. Nested parameters refer to those tuning parameters that exist only within a particular setting of another tuning parameter, and a parameter within which other parameters are nested is called a branching parameter. To capture the conditional dependence between branching and nested parameters, a unified Bayesian optimization framework is proposed. The sufficient conditions are rigorously derived to guarantee the validity of the kernel function, and the asymptotic convergence of the proposed optimization framework is proven under the continuum-armed-bandit setting. Based on the new GP model, which accounts for the dependent structure among input variables through a new kernel function, higher prediction accuracy and better optimization efficiency are observed in a series of synthetic simulations and real data applications of neural networks. Sensitivity analysis is also performed to provide insights into how changes in hyperparameter values affect prediction accuracy.
Abstract:Open-vocabulary 3D instance segmentation has emerged as a frontier topic due to its capability to segment 3D instances beyond a predefined set of categories. However, compared to significant progress in the 2D domain, methods for 3D open-vocabulary instance segmentation are hindered by the limited scale of high-quality annotated 3D data. To harness the capabilities of 2D models, recent efforts have focused on merging 2D masks based on metrics such as geometric and semantic similarity to form 3D instances. In contrast to these local metrics, we propose a novel metric called view consensus to better exploit multi-view observation. The key insight is that two 2D masks should be considered as belonging to the same instance if a considerable number of other 2D masks from other views contain both these two masks. Based on this metric, we build a global mask graph and iteratively cluster masks, prioritizing mask pairs with solid view consensus. The corresponding 3D points cluster of these 2D mask clusters can be regarded as 3D instances, along with the fused open-vocabulary features from clustered 2D masks. Through this multi-view verification and fusion mechanism, our method effectively leverages the prior instance knowledge from massive 2D masks predicted by visual foundation models, eliminating the need for training on 3D data. Experiments on publicly available datasets, including ScanNet200 and MatterPort3D, demonstrate that our method achieves state-of-the-art performance in both open-vocabulary instance segmentation and class-agnostic mask generation. Our project page is at https://pku-epic.github.io/MaskClustering.
Abstract:Neural radiance fields with stochasticity have garnered significant interest by enabling the sampling of plausible radiance fields and quantifying uncertainty for downstream tasks. Existing works rely on the independence assumption of points in the radiance field or the pixels in input views to obtain tractable forms of the probability density function. However, this assumption inadvertently impacts performance when dealing with intricate geometry and texture. In this work, we propose an independence-assumption-free probabilistic neural radiance field based on Flow-GAN. By combining the generative capability of adversarial learning and the powerful expressivity of normalizing flow, our method explicitly models the density-radiance distribution of the whole scene. We represent our probabilistic NeRF as a mean-shifted probabilistic residual neural model. Our model is trained without an explicit likelihood function, thereby avoiding the independence assumption. Specifically, We downsample the training images with different strides and centers to form fixed-size patches which are used to train the generator with patch-based adversarial learning. Through extensive experiments, our method demonstrates state-of-the-art performance by predicting lower rendering errors and more reliable uncertainty on both synthetic and real-world datasets.
Abstract:Mobile manipulation constitutes a fundamental task for robotic assistants and garners significant attention within the robotics community. A critical challenge inherent in mobile manipulation is the effective observation of the target while approaching it for grasping. In this work, we propose a graspability-aware mobile manipulation approach powered by an online grasping pose fusion framework that enables a temporally consistent grasping observation. Specifically, the predicted grasping poses are online organized to eliminate the redundant, outlier grasping poses, which can be encoded as a grasping pose observation state for reinforcement learning. Moreover, on-the-fly fusing the grasping poses enables a direct assessment of graspability, encompassing both the quantity and quality of grasping poses.