Abstract:Effective compression technology is crucial for 3DGS to adapt to varying storage and transmission conditions. However, existing methods fail to address size constraints while maintaining optimal quality. In this paper, we introduce SizeGS, a framework that compresses 3DGS within a specified size budget while optimizing visual quality. We start with a size estimator to establish a clear relationship between file size and hyperparameters. Leveraging this estimator, we incorporate mixed precision quantization (MPQ) into 3DGS attributes, structuring MPQ in two hierarchical level -- inter-attribute and intra-attribute -- to optimize visual quality under the size constraint. At the inter-attribute level, we assign bit-widths to each attribute channel by formulating the combinatorial optimization as a 0-1 integer linear program, which can be efficiently solved. At the intra-attribute level, we divide each attribute channel into blocks of vectors, quantizing each vector based on the optimal bit-width derived at the inter-attribute level. Dynamic programming determines block lengths. Using the size estimator and MPQ, we develop a calibrated algorithm to identify optimal hyperparameters in just 10 minutes, achieving a 1.69$\times$ efficiency increase with quality comparable to state-of-the-art methods.
Abstract:The proliferation of Large Language Models (LLMs) has s fueled a shift in robot learning from automation towards general embodied Artificial Intelligence (AI). Adopting foundation models together with traditional learning methods to robot learning has increasingly gained recent interest research community and showed potential for real-life application. However, there are few literatures comprehensively reviewing the relatively new technologies combined with robotics. The purpose of this review is to systematically assess the state-of-the-art foundation model techniques in the robot learning and to identify future potential areas. Specifically, we first summarized the technical evolution of robot learning and identified the necessary preliminary preparations for foundation models including the simulators, datasets, foundation model framework. In addition, we focused on the following four mainstream areas of robot learning including manipulation, navigation, planning, and reasoning and demonstrated how the foundation model techniques can be adopted in the above scenarios. Furthermore, critical issues which are neglected in the current literatures including robot hardware and software decoupling, dynamic data, generalization performance with the presence of human, etc. were discussed. This review highlights the state-of-the-art progress of foundation models in robot learning and future research should focus on multimodal interaction especially dynamics data, exclusive foundation models for robots, and AI alignment, etc.
Abstract:The integration of machine learning methods and Model Predictive Control (MPC) has received increasing attention in recent years. In general, learning-based predictive control (LPC) is promising to build data-driven models and solve the online optimization problem with lower computational costs. However, the robustness of LPC is difficult to be guaranteed since there will be uncertainties due to function approximation used in machine learning algorithms. In this paper, a novel robust learning-based predictive control (r-LPC) scheme is proposed for constrained nonlinear systems with unknown dynamics. In r-LPC, the Koopman operator is used to form a global linear representation of the unknown dynamics, and an incremental actor-critic algorithm is presented for receding horizon optimization. To realize the satisfaction of system constraints, soft logarithmic barrier functions are designed within the learning predictive framework. The recursive feasibility and stability of the closed-loop system are discussed under the convergence arguments of the approximation algorithms adopted. Also, the robustness property of r-LPC is analyzed theoretically by taking into consideration the existence of perturbations on the controller due to possible approximation errors. Simulation results with the proposed learning control approach for the data-driven regulation of a Van der Pol oscillator system have been reported, including the comparisons with a classic MPC and an infinite-horizon Dual Heuristic Programming (DHP) algorithm. The results show that the r-LPC significantly outperforms the DHP algorithm in terms of control performance and can be comparative to the MPC in terms of regulating control as well as energy consumption. Moreover, its average computational cost is much smaller than that with the MPC in the adopted environment.