Abstract:In traditional RAG framework, the basic retrieval units are normally short. The common retrievers like DPR normally work with 100-word Wikipedia paragraphs. Such a design forces the retriever to search over a large corpus to find the `needle' unit. In contrast, the readers only need to extract answers from the short retrieved units. Such an imbalanced `heavy' retriever and `light' reader design can lead to sub-optimal performance. In order to alleviate the imbalance, we propose a new framework LongRAG, consisting of a `long retriever' and a `long reader'. LongRAG processes the entire Wikipedia into 4K-token units, which is 30x longer than before. By increasing the unit size, we significantly reduce the total units from 22M to 700K. This significantly lowers the burden of retriever, which leads to a remarkable retrieval score: answer recall@1=71% on NQ (previously 52%) and answer recall@2=72% (previously 47%) on HotpotQA (full-wiki). Then we feed the top-k retrieved units ($\approx$ 30K tokens) to an existing long-context LLM to perform zero-shot answer extraction. Without requiring any training, LongRAG achieves an EM of 62.7% on NQ, which is the best known result. LongRAG also achieves 64.3% on HotpotQA (full-wiki), which is on par of the SoTA model. Our study offers insights into the future roadmap for combining RAG with long-context LLMs.
Abstract:In the real world, documents are organized in different formats and varied modalities. Traditional retrieval pipelines require tailored document parsing techniques and content extraction modules to prepare input for indexing. This process is tedious, prone to errors, and has information loss. To this end, we propose Document Screenshot Embedding} (DSE), a novel retrieval paradigm that regards document screenshots as a unified input format, which does not require any content extraction preprocess and preserves all the information in a document (e.g., text, image and layout). DSE leverages a large vision-language model to directly encode document screenshots into dense representations for retrieval. To evaluate our method, we first craft the dataset of Wiki-SS, a 1.3M Wikipedia web page screenshots as the corpus to answer the questions from the Natural Questions dataset. In such a text-intensive document retrieval setting, DSE shows competitive effectiveness compared to other text retrieval methods relying on parsing. For example, DSE outperforms BM25 by 17 points in top-1 retrieval accuracy. Additionally, in a mixed-modality task of slide retrieval, DSE significantly outperforms OCR text retrieval methods by over 15 points in nDCG@10. These experiments show that DSE is an effective document retrieval paradigm for diverse types of documents. Model checkpoints, code, and Wiki-SS collection will be released.
Abstract:In the age of large-scale language models, benchmarks like the Massive Multitask Language Understanding (MMLU) have been pivotal in pushing the boundaries of what AI can achieve in language comprehension and reasoning across diverse domains. However, as models continue to improve, their performance on these benchmarks has begun to plateau, making it increasingly difficult to discern differences in model capabilities. This paper introduces MMLU-Pro, an enhanced dataset designed to extend the mostly knowledge-driven MMLU benchmark by integrating more challenging, reasoning-focused questions and expanding the choice set from four to ten options. Additionally, MMLU-Pro eliminates the trivial and noisy questions in MMLU. Our experimental results show that MMLU-Pro not only raises the challenge, causing a significant drop in accuracy by 16% to 33% compared to MMLU but also demonstrates greater stability under varying prompts. With 24 different prompt styles tested, the sensitivity of model scores to prompt variations decreased from 4-5% in MMLU to just 2% in MMLU-Pro. Additionally, we found that models utilizing Chain of Thought (CoT) reasoning achieved better performance on MMLU-Pro compared to direct answering, which is in stark contrast to the findings on the original MMLU, indicating that MMLU-Pro includes more complex reasoning questions. Our assessments confirm that MMLU-Pro is a more discriminative benchmark to better track progress in the field.
Abstract:The current use of large language models (LLMs) for zero-shot document ranking follows one of two ways: 1) prompt-based re-ranking methods, which require no further training but are feasible for only re-ranking a handful of candidate documents due to the associated computational costs; and 2) unsupervised contrastive trained dense retrieval methods, which can retrieve relevant documents from the entire corpus but require a large amount of paired text data for contrastive training. In this paper, we propose PromptReps, which combines the advantages of both categories: no need for training and the ability to retrieve from the whole corpus. Our method only requires prompts to guide an LLM to generate query and document representations for effective document retrieval. Specifically, we prompt the LLMs to represent a given text using a single word, and then use the last token's hidden states and the corresponding logits associated to the prediction of the next token to construct a hybrid document retrieval system. The retrieval system harnesses both dense text embedding and sparse bag-of-words representations given by the LLM. Our experimental evaluation on the BEIR zero-shot document retrieval datasets illustrates that this simple prompt-based LLM retrieval method can achieve a similar or higher retrieval effectiveness than state-of-the-art LLM embedding methods that are trained with large amounts of unsupervised data, especially when using a larger LLM.
Abstract:The effectiveness of multi-stage text retrieval has been solidly demonstrated since before the era of pre-trained language models. However, most existing studies utilize models that predate recent advances in large language models (LLMs). This study seeks to explore potential improvements that state-of-the-art LLMs can bring. We conduct a comprehensive study, fine-tuning the latest LLaMA model both as a dense retriever (RepLLaMA) and as a pointwise reranker (RankLLaMA) for both passage retrieval and document retrieval using the MS MARCO datasets. Our findings demonstrate that the effectiveness of large language models indeed surpasses that of smaller models. Additionally, since LLMs can inherently handle longer contexts, they can represent entire documents holistically, obviating the need for traditional segmenting and pooling strategies. Furthermore, evaluations on BEIR demonstrate that our RepLLaMA-RankLLaMA pipeline exhibits strong zero-shot effectiveness. Model checkpoints from this study are available on HuggingFace.
Abstract:Large language models (LLMs) exhibit positional bias in how they use context, which especially complicates listwise ranking. To address this, we propose permutation self-consistency, a form of self-consistency over ranking list outputs of black-box LLMs. Our key idea is to marginalize out different list orders in the prompt to produce an order-independent ranking with less positional bias. First, given some input prompt, we repeatedly shuffle the list in the prompt and pass it through the LLM while holding the instructions the same. Next, we aggregate the resulting sample of rankings by computing the central ranking closest in distance to all of them, marginalizing out prompt order biases in the process. Theoretically, we prove the robustness of our method, showing convergence to the true ranking in the presence of random perturbations. Empirically, on five list-ranking datasets in sorting and passage reranking, our approach improves scores from conventional inference by up to 7-18% for GPT-3.5 and 8-16% for LLaMA v2 (70B), surpassing the previous state of the art in passage reranking. Our code is at https://github.com/castorini/perm-sc.
Abstract:Large-scale language models (LLMs), such as ChatGPT, are capable of generating human-like responses for various downstream tasks, such as task-oriented dialogues and question answering. However, applying LLMs to medical domains remains challenging due to their inability to leverage domain-specific knowledge. In this study, we present the Large-scale Language Models Augmented with Medical Textbooks (LLM-AMT), which integrates authoritative medical textbooks as the cornerstone of its design, enhancing its proficiency in the specialized domain through plug-and-play modules, comprised of a Hybrid Textbook Retriever, supplemented by the Query Augmenter and the LLM Reader. Experimental evaluation on three open-domain medical question-answering tasks reveals a substantial enhancement in both the professionalism and accuracy of the LLM responses when utilizing LLM-AMT, exhibiting an improvement ranging from 11.4% to 13.2%. Despite being 100 times smaller, we found that medical textbooks as the retrieval corpus serves as a more valuable external knowledge source than Wikipedia in the medical domain. Our experiments show that textbook augmentation results in a performance improvement ranging from 9.7% to 12.2% over Wikipedia augmentation.
Abstract:BEIR is a benchmark dataset for zero-shot evaluation of information retrieval models across 18 different domain/task combinations. In recent years, we have witnessed the growing popularity of a representation learning approach to building retrieval models, typically using pretrained transformers in a supervised setting. This naturally begs the question: How effective are these models when presented with queries and documents that differ from the training data? Examples include searching in different domains (e.g., medical or legal text) and with different types of queries (e.g., keywords vs. well-formed questions). While BEIR was designed to answer these questions, our work addresses two shortcomings that prevent the benchmark from achieving its full potential: First, the sophistication of modern neural methods and the complexity of current software infrastructure create barriers to entry for newcomers. To this end, we provide reproducible reference implementations that cover the two main classes of approaches: learned dense and sparse models. Second, there does not exist a single authoritative nexus for reporting the effectiveness of different models on BEIR, which has led to difficulty in comparing different methods. To remedy this, we present an official self-service BEIR leaderboard that provides fair and consistent comparisons of retrieval models. By addressing both shortcomings, our work facilitates future explorations in a range of interesting research questions that BEIR enables.
Abstract:The recent LLMs like GPT-4 and PaLM-2 have made tremendous progress in solving fundamental math problems like GSM8K by achieving over 90% accuracy. However, their capabilities to solve more challenging math problems which require domain-specific knowledge (i.e. theorem) have yet to be investigated. In this paper, we introduce TheoremQA, the first theorem-driven question-answering dataset designed to evaluate AI models' capabilities to apply theorems to solve challenging science problems. TheoremQA is curated by domain experts containing 800 high-quality questions covering 350 theorems (e.g. Taylor's theorem, Lagrange's theorem, Huffman coding, Quantum Theorem, Elasticity Theorem, etc) from Math, Physics, EE&CS, and Finance. We evaluate a wide spectrum of 16 large language and code models with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. We found that GPT-4's capabilities to solve these problems are unparalleled, achieving an accuracy of 51% with Program-of-Thoughts Prompting. All the existing open-sourced models are below 15%, barely surpassing the random-guess baseline. Given the diversity and broad coverage of TheoremQA, we believe it can be used as a better benchmark to evaluate LLMs' capabilities to solve challenging science problems. The data and code are released in https://github.com/wenhuchen/TheoremQA.
Abstract:Question answering over knowledge bases is considered a difficult problem due to the challenge of generalizing to a wide variety of possible natural language questions. Additionally, the heterogeneity of knowledge base schema items between different knowledge bases often necessitates specialized training for different knowledge base question-answering (KBQA) datasets. To handle questions over diverse KBQA datasets with a unified training-free framework, we propose KB-BINDER, which for the first time enables few-shot in-context learning over KBQA tasks. Firstly, KB-BINDER leverages large language models like Codex to generate logical forms as the draft for a specific question by imitating a few demonstrations. Secondly, KB-BINDER grounds on the knowledge base to bind the generated draft to an executable one with BM25 score matching. The experimental results on four public heterogeneous KBQA datasets show that KB-BINDER can achieve a strong performance with only a few in-context demonstrations. Especially on GraphQA and 3-hop MetaQA, KB-BINDER can even outperform the state-of-the-art trained models. On GrailQA and WebQSP, our model is also on par with other fully-trained models. We believe KB-BINDER can serve as an important baseline for future research. Our code is available at https://github.com/ltl3A87/KB-BINDER.