Abstract:In clinical In-Vitro Fertilization (IVF), identifying the most viable embryo for transfer is important to increasing the likelihood of a successful pregnancy. Traditionally, this process involves embryologists manually assessing embryos' static morphological features at specific intervals using light microscopy. This manual evaluation is not only time-intensive and costly, due to the need for expert analysis, but also inherently subjective, leading to variability in the selection process. To address these challenges, we develop a multimodal model that leverages both time-lapse video data and Electronic Health Records (EHRs) to predict embryo viability. One of the primary challenges of our research is to effectively combine time-lapse video and EHR data, owing to their inherent differences in modality. We comprehensively analyze our multimodal model with various modality inputs and integration approaches. Our approach will enable fast and automated embryo viability predictions in scale for clinical IVF.
Abstract:Text-to-image (T2I) models are increasingly used in impactful real-life applications. As such, there is a growing need to audit these models to ensure that they generate desirable, task-appropriate images. However, systematically inspecting the associations between prompts and generated content in a human-understandable way remains challenging. To address this, we propose \emph{Concept2Concept}, a framework where we characterize conditional distributions of vision language models using interpretable concepts and metrics that can be defined in terms of these concepts. This characterization allows us to use our framework to audit models and prompt-datasets. To demonstrate, we investigate several case studies of conditional distributions of prompts, such as user defined distributions or empirical, real world distributions. Lastly, we implement Concept2Concept as an open-source interactive visualization tool facilitating use by non-technical end-users. Warning: This paper contains discussions of harmful content, including CSAM and NSFW material, which may be disturbing to some readers.
Abstract:Multi-modal pre-trained models efficiently extract and fuse features from different modalities with low memory requirements for fine-tuning. Despite this efficiency, their application in disease diagnosis is under-explored. A significant challenge is the frequent occurrence of missing modalities, which impairs performance. Additionally, fine-tuning the entire pre-trained model demands substantial computational resources. To address these issues, we introduce Modality-aware Low-Rank Adaptation (MoRA), a computationally efficient method. MoRA projects each input to a low intrinsic dimension but uses different modality-aware up-projections for modality-specific adaptation in cases of missing modalities. Practically, MoRA integrates into the first block of the model, significantly improving performance when a modality is missing. It requires minimal computational resources, with less than 1.6% of the trainable parameters needed compared to training the entire model. Experimental results show that MoRA outperforms existing techniques in disease diagnosis, demonstrating superior performance, robustness, and training efficiency.
Abstract:Recent studies on learning-based sound source localization have mainly focused on the localization performance perspective. However, prior work and existing benchmarks overlook a crucial aspect: cross-modal interaction, which is essential for interactive sound source localization. Cross-modal interaction is vital for understanding semantically matched or mismatched audio-visual events, such as silent objects or off-screen sounds. In this paper, we first comprehensively examine the cross-modal interaction of existing methods, benchmarks, evaluation metrics, and cross-modal understanding tasks. Then, we identify the limitations of previous studies and make several contributions to overcome the limitations. First, we introduce a new synthetic benchmark for interactive sound source localization. Second, we introduce new evaluation metrics to rigorously assess sound source localization methods, focusing on accurately evaluating both localization performance and cross-modal interaction ability. Third, we propose a learning framework with a cross-modal alignment strategy to enhance cross-modal interaction. Lastly, we evaluate both interactive sound source localization and auxiliary cross-modal retrieval tasks together to thoroughly assess cross-modal interaction capabilities and benchmark competing methods. Our new benchmarks and evaluation metrics reveal previously overlooked issues in sound source localization studies. Our proposed novel method, with enhanced cross-modal alignment, shows superior sound source localization performance. This work provides the most comprehensive analysis of sound source localization to date, with extensive validation of competing methods on both existing and new benchmarks using new and standard evaluation metrics.
Abstract:Multi-task learning has become increasingly popular in the machine learning field, but its practicality is hindered by the need for large, labeled datasets. Most multi-task learning methods depend on fully labeled datasets wherein each input example is accompanied by ground-truth labels for all target tasks. Unfortunately, curating such datasets can be prohibitively expensive and impractical, especially for dense prediction tasks which require per-pixel labels for each image. With this in mind, we propose Joint-Task Regularization (JTR), an intuitive technique which leverages cross-task relations to simultaneously regularize all tasks in a single joint-task latent space to improve learning when data is not fully labeled for all tasks. JTR stands out from existing approaches in that it regularizes all tasks jointly rather than separately in pairs -- therefore, it achieves linear complexity relative to the number of tasks while previous methods scale quadratically. To demonstrate the validity of our approach, we extensively benchmark our method across a wide variety of partially labeled scenarios based on NYU-v2, Cityscapes, and Taskonomy.
Abstract:Video temporal grounding (VTG) is a fine-grained video understanding problem that aims to ground relevant clips in untrimmed videos given natural language queries. Most existing VTG models are built upon frame-wise final-layer CLIP features, aided by additional temporal backbones (e.g., SlowFast) with sophisticated temporal reasoning mechanisms. In this work, we claim that CLIP itself already shows great potential for fine-grained spatial-temporal modeling, as each layer offers distinct yet useful information under different granularity levels. Motivated by this, we propose Reversed Recurrent Tuning ($R^2$-Tuning), a parameter- and memory-efficient transfer learning framework for video temporal grounding. Our method learns a lightweight $R^2$ Block containing only 1.5% of the total parameters to perform progressive spatial-temporal modeling. Starting from the last layer of CLIP, $R^2$ Block recurrently aggregates spatial features from earlier layers, then refines temporal correlation conditioning on the given query, resulting in a coarse-to-fine scheme. $R^2$-Tuning achieves state-of-the-art performance across three VTG tasks (i.e., moment retrieval, highlight detection, and video summarization) on six public benchmarks (i.e., QVHighlights, Charades-STA, Ego4D-NLQ, TACoS, YouTube Highlights, and TVSum) even without the additional backbone, demonstrating the significance and effectiveness of the proposed scheme. Our code is available at https://github.com/yeliudev/R2-Tuning.
Abstract:Existing video compression (VC) methods primarily aim to reduce the spatial and temporal redundancies between consecutive frames in a video while preserving its quality. In this regard, previous works have achieved remarkable results on videos acquired under specific settings such as instant (known) exposure time and shutter speed which often result in sharp videos. However, when these methods are evaluated on videos captured under different temporal priors, which lead to degradations like motion blur and low frame rate, they fail to maintain the quality of the contents. In this work, we tackle the VC problem in a general scenario where a given video can be blurry due to predefined camera settings or dynamics in the scene. By exploiting the natural trade-off between visual enhancement and data compression, we formulate VC as a min-max optimization problem and propose an effective framework and training strategy to tackle the problem. Extensive experimental results on several benchmark datasets confirm the effectiveness of our method compared to several state-of-the-art VC approaches.
Abstract:Humans can easily perceive the direction of sound sources in a visual scene, termed sound source localization. Recent studies on learning-based sound source localization have mainly explored the problem from a localization perspective. However, prior arts and existing benchmarks do not account for a more important aspect of the problem, cross-modal semantic understanding, which is essential for genuine sound source localization. Cross-modal semantic understanding is important in understanding semantically mismatched audio-visual events, e.g., silent objects, or off-screen sounds. To account for this, we propose a cross-modal alignment task as a joint task with sound source localization to better learn the interaction between audio and visual modalities. Thereby, we achieve high localization performance with strong cross-modal semantic understanding. Our method outperforms the state-of-the-art approaches in both sound source localization and cross-modal retrieval. Our work suggests that jointly tackling both tasks is necessary to conquer genuine sound source localization.
Abstract:Active learning has been utilized as an efficient tool in building anomaly detection models by leveraging expert feedback. In an active learning framework, a model queries samples to be labeled by experts and re-trains the model with the labeled data samples. It unburdens in obtaining annotated datasets while improving anomaly detection performance. However, most of the existing studies focus on helping experts identify as many abnormal data samples as possible, which is a sub-optimal approach for one-class classification-based deep anomaly detection. In this paper, we tackle two essential problems of active learning for Deep SVDD: query strategy and semi-supervised learning method. First, rather than solely identifying anomalies, our query strategy selects uncertain samples according to an adaptive boundary. Second, we apply noise contrastive estimation in training a one-class classification model to incorporate both labeled normal and abnormal data effectively. We analyze that the proposed query strategy and semi-supervised loss individually improve an active learning process of anomaly detection and further improve when combined together on seven anomaly detection datasets.
Abstract:Most deep anomaly detection models are based on learning normality from datasets due to the difficulty of defining abnormality by its diverse and inconsistent nature. Therefore, it has been a common practice to learn normality under the assumption that anomalous data are absent in a training dataset, which we call normality assumption. However, in practice, the normality assumption is often violated due to the nature of real data distributions that includes anomalous tails, i.e., a contaminated dataset. Thereby, the gap between the assumption and actual training data affects detrimentally in learning of an anomaly detection model. In this work, we propose a learning framework to reduce this gap and achieve better normality representation. Our key idea is to identify sample-wise normality and utilize it as an importance weight, which is updated iteratively during the training. Our framework is designed to be model-agnostic and hyperparameter insensitive so that it applies to a wide range of existing methods without careful parameter tuning. We apply our framework to three different representative approaches of deep anomaly detection that are classified into one-class classification-, probabilistic model-, and reconstruction-based approaches. In addition, we address the importance of a termination condition for iterative methods and propose a termination criterion inspired by the anomaly detection objective. We validate that our framework improves the robustness of the anomaly detection models under different levels of contamination ratios on five anomaly detection benchmark datasets and two image datasets. On various contaminated datasets, our framework improves the performance of three representative anomaly detection methods, measured by area under the ROC curve.