Abstract:Recent advances in Large Vision-Language Models (LVLMs) have showcased strong reasoning abilities across multiple modalities, achieving significant breakthroughs in various real-world applications. Despite this great success, the safety guardrail of LVLMs may not cover the unforeseen domains introduced by the visual modality. Existing studies primarily focus on eliciting LVLMs to generate harmful responses via carefully crafted image-based jailbreaks designed to bypass alignment defenses. In this study, we reveal that a safe image can be exploited to achieve the same jailbreak consequence when combined with additional safe images and prompts. This stems from two fundamental properties of LVLMs: universal reasoning capabilities and safety snowball effect. Building on these insights, we propose Safety Snowball Agent (SSA), a novel agent-based framework leveraging agents' autonomous and tool-using abilities to jailbreak LVLMs. SSA operates through two principal stages: (1) initial response generation, where tools generate or retrieve jailbreak images based on potential harmful intents, and (2) harmful snowballing, where refined subsequent prompts induce progressively harmful outputs. Our experiments demonstrate that \ours can use nearly any image to induce LVLMs to produce unsafe content, achieving high success jailbreaking rates against the latest LVLMs. Unlike prior works that exploit alignment flaws, \ours leverages the inherent properties of LVLMs, presenting a profound challenge for enforcing safety in generative multimodal systems. Our code is avaliable at \url{https://github.com/gzcch/Safety_Snowball_Agent}.
Abstract:Personality analysis from online short videos has gained prominence due to its applications in personalized recommendation systems, sentiment analysis, and human-computer interaction. Traditional assessment methods, such as questionnaires based on the Big Five Personality Framework, are limited by self-report biases and are impractical for large-scale or real-time analysis. Leveraging the rich, multi-modal data present in short videos offers a promising alternative for more accurate personality inference. However, integrating these diverse and asynchronous modalities poses significant challenges, particularly in aligning time-varying data and ensuring models generalize well to new domains with limited labeled data. In this paper, we propose a novel multi-modal personality analysis framework that addresses these challenges by synchronizing and integrating features from multiple modalities and enhancing model generalization through domain adaptation. We introduce a timestamp-based modality alignment mechanism that synchronizes data based on spoken word timestamps, ensuring accurate correspondence across modalities and facilitating effective feature integration. To capture temporal dependencies and inter-modal interactions, we employ Bidirectional Long Short-Term Memory networks and self-attention mechanisms, allowing the model to focus on the most informative features for personality prediction. Furthermore, we develop a gradient-based domain adaptation method that transfers knowledge from multiple source domains to improve performance in target domains with scarce labeled data. Extensive experiments on real-world datasets demonstrate that our framework significantly outperforms existing methods in personality prediction tasks, highlighting its effectiveness in capturing complex behavioral cues and robustness in adapting to new domains.
Abstract:In clinical In-Vitro Fertilization (IVF), identifying the most viable embryo for transfer is important to increasing the likelihood of a successful pregnancy. Traditionally, this process involves embryologists manually assessing embryos' static morphological features at specific intervals using light microscopy. This manual evaluation is not only time-intensive and costly, due to the need for expert analysis, but also inherently subjective, leading to variability in the selection process. To address these challenges, we develop a multimodal model that leverages both time-lapse video data and Electronic Health Records (EHRs) to predict embryo viability. One of the primary challenges of our research is to effectively combine time-lapse video and EHR data, owing to their inherent differences in modality. We comprehensively analyze our multimodal model with various modality inputs and integration approaches. Our approach will enable fast and automated embryo viability predictions in scale for clinical IVF.
Abstract:Multi-modal pre-trained models efficiently extract and fuse features from different modalities with low memory requirements for fine-tuning. Despite this efficiency, their application in disease diagnosis is under-explored. A significant challenge is the frequent occurrence of missing modalities, which impairs performance. Additionally, fine-tuning the entire pre-trained model demands substantial computational resources. To address these issues, we introduce Modality-aware Low-Rank Adaptation (MoRA), a computationally efficient method. MoRA projects each input to a low intrinsic dimension but uses different modality-aware up-projections for modality-specific adaptation in cases of missing modalities. Practically, MoRA integrates into the first block of the model, significantly improving performance when a modality is missing. It requires minimal computational resources, with less than 1.6% of the trainable parameters needed compared to training the entire model. Experimental results show that MoRA outperforms existing techniques in disease diagnosis, demonstrating superior performance, robustness, and training efficiency.
Abstract:In this article, we explore the challenges and evolution of two key technologies in the current field of AI: Vision Transformer model and Large Language Model (LLM). Vision Transformer captures global information by splitting images into small pieces and leveraging Transformer's multi-head attention mechanism, but its high reference count and compute overhead limit deployment on mobile devices. At the same time, the rapid development of LLM has revolutionized natural language processing, but it also faces huge deployment challenges. To address these issues, we investigate model pruning techniques, with a particular focus on how to reduce redundant parameters without losing accuracy to accommodate personalized data and resource-constrained environments. In this paper, a new layered pruning strategy is proposed to distinguish the personalized layer from the common layer by compressed sensing and random sampling, thus significantly reducing the model parameters. Our experimental results show that the introduced step buffering mechanism further improves the accuracy of the model after pruning, providing new directions and possibilities for the deployment of efficient and personalized AI models on mobile devices in the future.
Abstract:Video Large Language Models (Video-LLMs) are flourishing and has advanced many video-language tasks. As a golden testbed, Video Question Answering (VideoQA) plays pivotal role in Video-LLM developing. This work conducts a timely and comprehensive study of Video-LLMs' behavior in VideoQA, aiming to elucidate their success and failure modes, and provide insights towards more human-like video understanding and question answering. Our analyses demonstrate that Video-LLMs excel in VideoQA; they can correlate contextual cues and generate plausible responses to questions about varied video contents. However, models falter in handling video temporality, both in reasoning about temporal content ordering and grounding QA-relevant temporal moments. Moreover, the models behave unintuitively - they are unresponsive to adversarial video perturbations while being sensitive to simple variations of candidate answers and questions. Also, they do not necessarily generalize better. The findings demonstrate Video-LLMs' QA capability in standard condition yet highlight their severe deficiency in robustness and interpretability, suggesting the urgent need on rationales in Video-LLM developing.
Abstract:Recent studies successfully learned static graph embeddings that are structurally fair by preventing the effectiveness disparity of high- and low-degree vertex groups in downstream graph mining tasks. However, achieving structure fairness in dynamic graph embedding remains an open problem. Neglecting degree changes in dynamic graphs will significantly impair embedding effectiveness without notably improving structure fairness. This is because the embedding performance of high-degree and low-to-high-degree vertices will significantly drop close to the generally poorer embedding performance of most slightly changed vertices in the long-tail part of the power-law distribution. We first identify biased structural evolutions in a dynamic graph based on the evolving trend of vertex degree and then propose FairDGE, the first structurally Fair Dynamic Graph Embedding algorithm. FairDGE learns biased structural evolutions by jointly embedding the connection changes among vertices and the long-short-term evolutionary trend of vertex degrees. Furthermore, a novel dual debiasing approach is devised to encode fair embeddings contrastively, customizing debiasing strategies for different biased structural evolutions. This innovative debiasing strategy breaks the effectiveness bottleneck of embeddings without notable fairness loss. Extensive experiments demonstrate that FairDGE achieves simultaneous improvement in the effectiveness and fairness of embeddings.
Abstract:Humans use multiple senses to comprehend the environment. Vision and language are two of the most vital senses since they allow us to easily communicate our thoughts and perceive the world around us. There has been a lot of interest in creating video-language understanding systems with human-like senses since a video-language pair can mimic both our linguistic medium and visual environment with temporal dynamics. In this survey, we review the key tasks of these systems and highlight the associated challenges. Based on the challenges, we summarize their methods from model architecture, model training, and data perspectives. We also conduct performance comparison among the methods, and discuss promising directions for future research.
Abstract:Common law courts need to refer to similar precedents' judgments to inform their current decisions. Generating high-quality summaries of court judgment documents can facilitate legal practitioners to efficiently review previous cases and assist the general public in accessing how the courts operate and how the law is applied. Previous court judgment summarization research focuses on civil law or a particular jurisdiction's judgments. However, judges can refer to the judgments from all common law jurisdictions. Current summarization datasets are insufficient to satisfy the demands of summarizing precedents across multiple jurisdictions, especially when labeled data are scarce for many jurisdictions. To address the lack of datasets, we present CLSum, the first dataset for summarizing multi-jurisdictional common law court judgment documents. Besides, this is the first court judgment summarization work adopting large language models (LLMs) in data augmentation, summary generation, and evaluation. Specifically, we design an LLM-based data augmentation method incorporating legal knowledge. We also propose a legal knowledge enhanced evaluation metric based on LLM to assess the quality of generated judgment summaries. Our experimental results verify that the LLM-based summarization methods can perform well in the few-shot and zero-shot settings. Our LLM-based data augmentation method can mitigate the impact of low data resources. Furthermore, we carry out comprehensive comparative experiments to find essential model components and settings that are capable of enhancing summarization performance.
Abstract:Compared with only pursuing recommendation accuracy, the explainability of a recommendation model has drawn more attention in recent years. Many graph-based recommendations resort to informative paths with the attention mechanism for the explanation. Unfortunately, these attention weights are intentionally designed for model accuracy but not explainability. Recently, some researchers have started to question attention-based explainability because the attention weights are unstable for different reproductions, and they may not always align with human intuition. Inspired by the counterfactual reasoning from causality learning theory, we propose a novel explainable framework targeting path-based recommendations, wherein the explainable weights of paths are learned to replace attention weights. Specifically, we design two counterfactual reasoning algorithms from both path representation and path topological structure perspectives. Moreover, unlike traditional case studies, we also propose a package of explainability evaluation solutions with both qualitative and quantitative methods. We conduct extensive experiments on three real-world datasets, the results of which further demonstrate the effectiveness and reliability of our method.