Abstract:Recent studies have highlighted significant fairness issues in Graph Transformer (GT) models, particularly against subgroups defined by sensitive features. Additionally, GTs are computationally intensive and memory-demanding, limiting their application to large-scale graphs. Our experiments demonstrate that graph partitioning can enhance the fairness of GT models while reducing computational complexity. To understand this improvement, we conducted a theoretical investigation into the root causes of fairness issues in GT models. We found that the sensitive features of higher-order nodes disproportionately influence lower-order nodes, resulting in sensitive feature bias. We propose Fairness-aware scalable GT based on Graph Partitioning (FairGP), which partitions the graph to minimize the negative impact of higher-order nodes. By optimizing attention mechanisms, FairGP mitigates the bias introduced by global attention, thereby enhancing fairness. Extensive empirical evaluations on six real-world datasets validate the superior performance of FairGP in achieving fairness compared to state-of-the-art methods. The codes are available at https://github.com/LuoRenqiang/FairGP.
Abstract:Fairness-aware Graph Neural Networks (GNNs) often face a challenging trade-off, where prioritizing fairness may require compromising utility. In this work, we re-examine fairness through the lens of spectral graph theory, aiming to reconcile fairness and utility within the framework of spectral graph learning. We explore the correlation between sensitive features and spectrum in GNNs, using theoretical analysis to delineate the similarity between original sensitive features and those after convolution under different spectrum. Our analysis reveals a reduction in the impact of similarity when the eigenvectors associated with the largest magnitude eigenvalue exhibit directional similarity. Based on these theoretical insights, we propose FUGNN, a novel spectral graph learning approach that harmonizes the conflict between fairness and utility. FUGNN ensures algorithmic fairness and utility by truncating the spectrum and optimizing eigenvector distribution during the encoding process. The fairness-aware eigenvector selection reduces the impact of convolution on sensitive features while concurrently minimizing the sacrifice of utility. FUGNN further optimizes the distribution of eigenvectors through a transformer architecture. By incorporating the optimized spectrum into the graph convolution network, FUGNN effectively learns node representations. Experiments on six real-world datasets demonstrate the superiority of FUGNN over baseline methods. The codes are available at https://github.com/yushuowiki/FUGNN.
Abstract:The design of Graph Transformers (GTs) generally neglects considerations for fairness, resulting in biased outcomes against certain sensitive subgroups. Since GTs encode graph information without relying on message-passing mechanisms, conventional fairness-aware graph learning methods cannot be directly applicable to address these issues. To tackle this challenge, we propose FairGT, a Fairness-aware Graph Transformer explicitly crafted to mitigate fairness concerns inherent in GTs. FairGT incorporates a meticulous structural feature selection strategy and a multi-hop node feature integration method, ensuring independence of sensitive features and bolstering fairness considerations. These fairness-aware graph information encodings seamlessly integrate into the Transformer framework for downstream tasks. We also prove that the proposed fair structural topology encoding with adjacency matrix eigenvector selection and multi-hop integration are theoretically effective. Empirical evaluations conducted across five real-world datasets demonstrate FairGT's superiority in fairness metrics over existing graph transformers, graph neural networks, and state-of-the-art fairness-aware graph learning approaches.
Abstract:Recent advancements in machine learning and deep learning have brought algorithmic fairness into sharp focus, illuminating concerns over discriminatory decision making that negatively impacts certain individuals or groups. These concerns have manifested in legal, ethical, and societal challenges, including the erosion of trust in intelligent systems. In response, this survey delves into the existing literature on algorithmic fairness, specifically highlighting its multifaceted social consequences. We introduce a novel taxonomy based on 'tolerance', a term we define as the degree to which variations in fairness outcomes are acceptable, providing a structured approach to understanding the subtleties of fairness within algorithmic decisions. Our systematic review covers diverse industries, revealing critical insights into the balance between algorithmic decision making and social equity. By synthesizing these insights, we outline a series of emerging challenges and propose strategic directions for future research and policy making, with the goal of advancing the field towards more equitable algorithmic systems.