Abstract:Early detection of fuel leakage at service stations with underground petroleum storage systems is a crucial task to prevent catastrophic hazards. Current data-driven fuel leakage detection methods employ offline statistical inventory reconciliation, leading to significant detection delays. Consequently, this can result in substantial financial loss and environmental impact on the surrounding community. In this paper, we propose a novel framework called Memory-based Online Change Point Detection (MOCPD) which operates in near real-time, enabling early detection of fuel leakage. MOCPD maintains a collection of representative historical data within a size-constrained memory, along with an adaptively computed threshold. Leaks are detected when the dissimilarity between the latest data and historical memory exceeds the current threshold. An update phase is incorporated in MOCPD to ensure diversity among historical samples in the memory. With this design, MOCPD is more robust and achieves a better recall rate while maintaining a reasonable precision score. We have conducted a variety of experiments comparing MOCPD to commonly used online change point detection (CPD) baselines on real-world fuel variance data with induced leakages, actual fuel leakage data and benchmark CPD datasets. Overall, MOCPD consistently outperforms the baseline methods in terms of detection accuracy, demonstrating its applicability to fuel leakage detection and CPD problems.
Abstract:Telepresence technology aims to provide an immersive virtual presence for remote conference applications, and it is extremely important to synthesize high-quality binaural audio signals for this aim. Because the ambient noise is often inevitable in practical application scenarios, it is highly desired that binaural audio signals without noise can be obtained from microphone-array signals directly. For this purpose, this paper proposes a new end-to-end noise-immune binaural audio synthesis framework from microphone-array signals, abbreviated as Array2BR, and experimental results show that binaural cues can be correctly mapped and noise can be well suppressed simultaneously using the proposed framework. Compared with existing methods, the proposed method achieved better performance in terms of both objective and subjective metric scores.
Abstract:Statistical heterogeneity is a root cause of tension among accuracy, fairness, and robustness of federated learning (FL), and is key in paving a path forward. Personalized FL (PFL) is an approach that aims to reduce the impact of statistical heterogeneity by developing personalized models for individual users, while also inherently providing benefits in terms of fairness and robustness. However, existing PFL frameworks focus on improving the performance of personalized models while neglecting the global model. Moreover, these frameworks achieve sublinear convergence rates and rely on strong assumptions. In this paper, we propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models. We propose a model selection strategy to improve performance in situations where clients have different types of heterogeneous data. Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions. We theoretically demonstrate that FLAME is more robust and fair than the state-of-the-art methods on a class of linear problems. Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks and performs more uniformly across clients.
Abstract:In this paper, we present our solution and experiment result for the Multi-Task Learning Challenge of the 7th Affective Behavior Analysis in-the-wild(ABAW7) Competition. This challenge consists of three tasks: action unit detection, facial expression recognition, and valance-arousal estimation. We address the research problems of this challenge from three aspects: 1)For learning robust visual feature representations, we introduce the pre-trained large model Dinov2. 2) To adaptively extract the required features of eack task, we design a task-adaptive block that performs cross-attention between a set of learnable query vectors and pre-extracted features. 3) By proposing the AU-assisted Graph Convolutional Network(AU-GCN), we make full use of the correlation information between AUs to assist in solving the EXPR and VA tasks. Finally, we achieve the evaluation measure of \textbf{1.2542} on the validation set provided by the organizers.
Abstract:In location-based resource allocation scenarios, the distances between each individual and the facility are desired to be approximately equal, thereby ensuring fairness. Individually fair clustering is often employed to achieve the principle of treating all points equally, which can be applied in these scenarios. This paper proposes a novel algorithm, tilted k-means (TKM), aiming to achieve individual fairness in clustering. We integrate the exponential tilting into the sum of squared errors (SSE) to formulate a novel objective function called tilted SSE. We demonstrate that the tilted SSE can generalize to SSE and employ the coordinate descent and first-order gradient method for optimization. We propose a novel fairness metric, the variance of the distances within each cluster, which can alleviate the Matthew Effect typically caused by existing fairness metrics. Our theoretical analysis demonstrates that the well-known k-means++ incurs a multiplicative error of O(k log k), and we establish the convergence of TKM under mild conditions. In terms of fairness, we prove that the variance generated by TKM decreases with a scaled hyperparameter. In terms of efficiency, we demonstrate the time complexity is linear with the dataset size. Our experiments demonstrate that TKM outperforms state-of-the-art methods in effectiveness, fairness, and efficiency.
Abstract:We investigate how to select the number of communities for weighted networks without a full likelihood modeling. First, we propose a novel weighted degree-corrected stochastic block model (DCSBM), in which the mean adjacency matrix is modeled as the same as in standard DCSBM, while the variance profile matrix is assumed to be related to the mean adjacency matrix through a given variance function. Our method of selection the number of communities is based on a sequential testing framework, in each step the weighed DCSBM is fitted via some spectral clustering method. A key step is to carry out matrix scaling on the estimated variance profile matrix. The resulting scaling factors can be used to normalize the adjacency matrix, from which the testing statistic is obtained. Under mild conditions on the weighted DCSBM, our proposed procedure is shown to be consistent in estimating the true number of communities. Numerical experiments on both simulated and real network data also demonstrate the desirable empirical properties of our method.
Abstract:Column generation (CG) is a well-established method for solving large-scale linear programs. It involves iteratively optimizing a subproblem containing a subset of columns and using its dual solution to generate new columns with negative reduced costs. This process continues until the dual values converge to the optimal dual solution to the original problem. A natural phenomenon in CG is the heavy oscillation of the dual values during iterations, which can lead to a substantial slowdown in the convergence rate. Stabilization techniques are devised to accelerate the convergence of dual values by using information beyond the state of the current subproblem. However, there remains a significant gap in obtaining more accurate dual values at an earlier stage. To further narrow this gap, this paper introduces a novel approach consisting of 1) a machine learning approach for accurate prediction of optimal dual solutions and 2) an adaptive stabilization technique that effectively capitalizes on accurate predictions. On the graph coloring problem, we show that our method achieves a significantly improved convergence rate compared to traditional methods.
Abstract:Clustering in dynamic environments is of increasing importance, with broad applications ranging from real-time data analysis and online unsupervised learning to dynamic facility location problems. While meta-heuristics have shown promising effectiveness in static clustering tasks, their application for tracking optimal clustering solutions or robust clustering over time in dynamic environments remains largely underexplored. This is partly due to a lack of dynamic datasets with diverse, controllable, and realistic dynamic characteristics, hindering systematic performance evaluations of clustering algorithms in various dynamic scenarios. This deficiency leads to a gap in our understanding and capability to effectively design algorithms for clustering in dynamic environments. To bridge this gap, this paper introduces the Dynamic Dataset Generator (DDG). DDG features multiple dynamic Gaussian components integrated with a range of heterogeneous, local, and global changes. These changes vary in spatial and temporal severity, patterns, and domain of influence, providing a comprehensive tool for simulating a wide range of dynamic scenarios.
Abstract:Tracking multiple targets in dynamic environments using distributed sensor networks is a challenging problem that has received significant attention in recent years. In such scenarios, the network of sensors must coordinate their actions to estimate the locations and trajectories of multiple targets accurately. Multi-sensor control methods can improve the performance of these networks by enabling efficient utilization of resources and enhancing the accuracy of the estimated target states. This paper proposes two novel multi-sensor control methods that utilize the Random Finite Set (RFS) framework to address this problem. Our methods improve computational tractability and enable fully distributed control, making them suitable for real-time applications.
Abstract:Cross-domain recommendation (CDR) has been proven as a promising way to tackle the user cold-start problem, which aims to make recommendations for users in the target domain by transferring the user preference derived from the source domain. Traditional CDR studies follow the embedding and mapping (EMCDR) paradigm, which transfers user representations from the source to target domain by learning a user-shared mapping function, neglecting the user-specific preference. Recent CDR studies attempt to learn user-specific mapping functions in meta-learning paradigm, which regards each user's CDR as an individual task, but neglects the preference correlations among users, limiting the beneficial information for user representations. Moreover, both of the paradigms neglect the explicit user-item interactions from both domains during the mapping process. To address the above issues, this paper proposes a novel CDR framework with neural process (NP), termed as CDRNP. Particularly, it develops the meta-learning paradigm to leverage user-specific preference, and further introduces a stochastic process by NP to capture the preference correlations among the overlapping and cold-start users, thus generating more powerful mapping functions by mapping the user-specific preference and common preference correlations to a predictive probability distribution. In addition, we also introduce a preference remainer to enhance the common preference from the overlapping users, and finally devises an adaptive conditional decoder with preference modulation to make prediction for cold-start users with items in the target domain. Experimental results demonstrate that CDRNP outperforms previous SOTA methods in three real-world CDR scenarios.