Abstract:Transformer models encounter challenges in scaling hidden dimensions efficiently, as uniformly increasing them inflates computational and memory costs while failing to emphasize the most relevant features for each token. For further understanding, we study hidden dimension sparsity and observe that trained Transformers utilize only a small fraction of token dimensions, revealing an "activation flow" pattern. Notably, there are shared sub-dimensions with sustained activation across multiple consecutive tokens and specialized sub-dimensions uniquely activated for each token. To better model token-relevant sub-dimensions, we propose MoHD (Mixture of Hidden Dimensions), a sparse conditional activation architecture. Particularly, MoHD employs shared sub-dimensions for common token features and a routing mechanism to dynamically activate specialized sub-dimensions. To mitigate potential information loss from sparsity, we design activation scaling and group fusion mechanisms to preserve activation flow. In this way, MoHD expands hidden dimensions with negligible increases in computation or parameters, efficient training and inference while maintaining performance. Evaluations across 10 NLP tasks show that MoHD surpasses Vanilla Transformers in parameter efficiency and task performance. It achieves 1.7% higher performance with 50% fewer activation parameters and 3.7% higher performance with a 3x parameter expansion at constant activation cost. MOHD offers a new perspective for scaling the model, showcasing the potential of hidden dimension sparsity to boost efficiency
Abstract:Large language model (LLM) role-playing has gained widespread attention, where the authentic character knowledge is crucial for constructing realistic LLM role-playing agents. However, existing works usually overlook the exploration of LLMs' ability to detect characters' known knowledge errors (KKE) and unknown knowledge errors (UKE) while playing roles, which would lead to low-quality automatic construction of character trainable corpus. In this paper, we propose a probing dataset to evaluate LLMs' ability to detect errors in KKE and UKE. The results indicate that even the latest LLMs struggle to effectively detect these two types of errors, especially when it comes to familiar knowledge. We experimented with various reasoning strategies and propose an agent-based reasoning method, Self-Recollection and Self-Doubt (S2RD), to further explore the potential for improving error detection capabilities. Experiments show that our method effectively improves the LLMs' ability to detect error character knowledge, but it remains an issue that requires ongoing attention.
Abstract:Multi-modal entity alignment (MMEA) aims to identify equivalent entities between two multi-modal knowledge graphs (MMKGs), whose entities can be associated with relational triples and related images. Most previous studies treat the graph structure as a special modality, and fuse different modality information with separate uni-modal encoders, neglecting valuable relational associations in modalities. Other studies refine each uni-modal information with graph structures, but may introduce unnecessary relations in specific modalities. To this end, we propose a novel local-to-global interaction network for MMEA, termed as LoginMEA. Particularly, we first fuse local multi-modal interactions to generate holistic entity semantics and then refine them with global relational interactions of entity neighbors. In this design, the uni-modal information is fused adaptively, and can be refined with relations accordingly. To enrich local interactions of multi-modal entity information, we device modality weights and low-rank interactive fusion, allowing diverse impacts and element-level interactions among modalities. To capture global interactions of graph structures, we adopt relation reflection graph attention networks, which fully capture relational associations between entities. Extensive experiments demonstrate superior results of our method over 5 cross-KG or bilingual benchmark datasets, indicating the effectiveness of capturing local and global interactions.
Abstract:Multi-modal entity alignment (MMEA) aims to identify equivalent entities between multi-modal knowledge graphs (MMKGs), where the entities can be associated with related images. Most existing studies integrate multi-modal information heavily relying on the automatically-learned fusion module, rarely suppressing the redundant information for MMEA explicitly. To this end, we explore variational information bottleneck for multi-modal entity alignment (IBMEA), which emphasizes the alignment-relevant information and suppresses the alignment-irrelevant information in generating entity representations. Specifically, we devise multi-modal variational encoders to generate modal-specific entity representations as probability distributions. Then, we propose four modal-specific information bottleneck regularizers, limiting the misleading clues in refining modal-specific entity representations. Finally, we propose a modal-hybrid information contrastive regularizer to integrate all the refined modal-specific representations, enhancing the entity similarity between MMKGs to achieve MMEA. We conduct extensive experiments on two cross-KG and three bilingual MMEA datasets. Experimental results demonstrate that our model consistently outperforms previous state-of-the-art methods, and also shows promising and robust performance in low-resource and high-noise data scenarios.
Abstract:Multimodal Entity Linking (MEL) aims to link ambiguous mentions in multimodal contexts to entities in a multimodal knowledge graph. A pivotal challenge is to fully leverage multi-element correlations between mentions and entities to bridge modality gap and enable fine-grained semantic matching. Existing methods attempt several local correlative mechanisms, relying heavily on the automatically learned attention weights, which may over-concentrate on partial correlations. To mitigate this issue, we formulate the correlation assignment problem as an optimal transport (OT) problem, and propose a novel MEL framework, namely OT-MEL, with OT-guided correlation assignment. Thereby, we exploit the correlation between multimodal features to enhance multimodal fusion, and the correlation between mentions and entities to enhance fine-grained matching. To accelerate model prediction, we further leverage knowledge distillation to transfer OT assignment knowledge to attention mechanism. Experimental results show that our model significantly outperforms previous state-of-the-art baselines and confirm the effectiveness of the OT-guided correlation assignment.
Abstract:Few-shot knowledge graph completion (FKGC) aims to query the unseen facts of a relation given its few-shot reference entity pairs. The side effect of noises due to the uncertainty of entities and triples may limit the few-shot learning, but existing FKGC works neglect such uncertainty, which leads them more susceptible to limited reference samples with noises. In this paper, we propose a novel uncertainty-aware few-shot KG completion framework (UFKGC) to model uncertainty for a better understanding of the limited data by learning representations under Gaussian distribution. Uncertainty representation is first designed for estimating the uncertainty scope of the entity pairs after transferring feature representations into a Gaussian distribution. Further, to better integrate the neighbors with uncertainty characteristics for entity features, we design an uncertainty-aware relational graph neural network (UR-GNN) to conduct convolution operations between the Gaussian distributions. Then, multiple random samplings are conducted for reference triples within the Gaussian distribution to generate smooth reference representations during the optimization. The final completion score for each query instance is measured by the designed uncertainty optimization to make our approach more robust to the noises in few-shot scenarios. Experimental results show that our approach achieves excellent performance on two benchmark datasets compared to its competitors.
Abstract:Cross-domain recommendation (CDR) has been proven as a promising way to tackle the user cold-start problem, which aims to make recommendations for users in the target domain by transferring the user preference derived from the source domain. Traditional CDR studies follow the embedding and mapping (EMCDR) paradigm, which transfers user representations from the source to target domain by learning a user-shared mapping function, neglecting the user-specific preference. Recent CDR studies attempt to learn user-specific mapping functions in meta-learning paradigm, which regards each user's CDR as an individual task, but neglects the preference correlations among users, limiting the beneficial information for user representations. Moreover, both of the paradigms neglect the explicit user-item interactions from both domains during the mapping process. To address the above issues, this paper proposes a novel CDR framework with neural process (NP), termed as CDRNP. Particularly, it develops the meta-learning paradigm to leverage user-specific preference, and further introduces a stochastic process by NP to capture the preference correlations among the overlapping and cold-start users, thus generating more powerful mapping functions by mapping the user-specific preference and common preference correlations to a predictive probability distribution. In addition, we also introduce a preference remainer to enhance the common preference from the overlapping users, and finally devises an adaptive conditional decoder with preference modulation to make prediction for cold-start users with items in the target domain. Experimental results demonstrate that CDRNP outperforms previous SOTA methods in three real-world CDR scenarios.
Abstract:Script Event Prediction (SEP) aims to predict the subsequent event for a given event chain from a candidate list. Prior research has achieved great success by integrating external knowledge to enhance the semantics, but it is laborious to acquisite the appropriate knowledge resources and retrieve the script-related knowledge. In this paper, we regard public pre-trained language models as knowledge bases and automatically mine the script-related knowledge via prompt-learning. Still, the scenario-diversity and label-ambiguity in scripts make it uncertain to construct the most functional prompt and label token in prompt learning, i.e., prompt-uncertainty and verbalizer-uncertainty. Considering the innate ability of Gaussian distribution to express uncertainty, we deploy the prompt tokens and label tokens as random variables following Gaussian distributions, where a prompt estimator and a verbalizer estimator are proposed to estimate their probabilistic representations instead of deterministic representations. We take the lead to explore prompt-learning in SEP and provide a fresh perspective to enrich the script semantics. Our method is evaluated on the most widely used benchmark and a newly proposed large-scale one. Experiments show that our method, which benefits from knowledge evoked from pre-trained language models, outperforms prior baselines by 1.46\% and 1.05\% on two benchmarks, respectively.
Abstract:Cross-Domain Sequential Recommendation (CDSR) aims to predict future interactions based on user's historical sequential interactions from multiple domains. Generally, a key challenge of CDSR is how to mine precise cross-domain user preference based on the intra-sequence and inter-sequence item interactions. Existing works first learn single-domain user preference only with intra-sequence item interactions, and then build a transferring module to obtain cross-domain user preference. However, such a pipeline and implicit solution can be severely limited by the bottleneck of the designed transferring module, and ignores to consider inter-sequence item relationships. In this paper, we propose C^2DSR to tackle the above problems to capture precise user preferences. The main idea is to simultaneously leverage the intra- and inter- sequence item relationships, and jointly learn the single- and cross- domain user preferences. Specifically, we first utilize a graph neural network to mine inter-sequence item collaborative relationship, and then exploit sequential attentive encoder to capture intra-sequence item sequential relationship. Based on them, we devise two different sequential training objectives to obtain user single-domain and cross-domain representations. Furthermore, we present a novel contrastive cross-domain infomax objective to enhance the correlation between single- and cross- domain user representations by maximizing their mutual information. To validate the effectiveness of C^2DSR, we first re-split four e-comerce datasets, and then conduct extensive experiments to demonstrate the effectiveness of our approach C^2DSR.
Abstract:This paper studies the multimodal named entity recognition (MNER) and multimodal relation extraction (MRE), which are important for multimedia social platform analysis. The core of MNER and MRE lies in incorporating evident visual information to enhance textual semantics, where two issues inherently demand investigations. The first issue is modality-noise, where the task-irrelevant information in each modality may be noises misleading the task prediction. The second issue is modality-gap, where representations from different modalities are inconsistent, preventing from building the semantic alignment between the text and image. To address these issues, we propose a novel method for MNER and MRE by Multi-Modal representation learning with Information Bottleneck (MMIB). For the first issue, a refinement-regularizer probes the information-bottleneck principle to balance the predictive evidence and noisy information, yielding expressive representations for prediction. For the second issue, an alignment-regularizer is proposed, where a mutual information-based item works in a contrastive manner to regularize the consistent text-image representations. To our best knowledge, we are the first to explore variational IB estimation for MNER and MRE. Experiments show that MMIB achieves the state-of-the-art performances on three public benchmarks.