Abstract:Depth estimation is a crucial technology in robotics. Recently, self-supervised depth estimation methods have demonstrated great potential as they can efficiently leverage large amounts of unlabelled real-world data. However, most existing methods are designed under the assumption of static scenes, which hinders their adaptability in dynamic environments. To address this issue, we present D$^3$epth, a novel method for self-supervised depth estimation in dynamic scenes. It tackles the challenge of dynamic objects from two key perspectives. First, within the self-supervised framework, we design a reprojection constraint to identify regions likely to contain dynamic objects, allowing the construction of a dynamic mask that mitigates their impact at the loss level. Second, for multi-frame depth estimation, we introduce a cost volume auto-masking strategy that leverages adjacent frames to identify regions associated with dynamic objects and generate corresponding masks. This provides guidance for subsequent processes. Furthermore, we propose a spectral entropy uncertainty module that incorporates spectral entropy to guide uncertainty estimation during depth fusion, effectively addressing issues arising from cost volume computation in dynamic environments. Extensive experiments on KITTI and Cityscapes datasets demonstrate that the proposed method consistently outperforms existing self-supervised monocular depth estimation baselines. Code is available at \url{https://github.com/Csyunling/D3epth}.
Abstract:Cloth-Changing Person Re-Identification (CC-ReID) aims to accurately identify the target person in more realistic surveillance scenarios, where pedestrians usually change their clothing. Despite great progress, limited cloth-changing training samples in existing CC-ReID datasets still prevent the model from adequately learning cloth-irrelevant features. In addition, due to the absence of explicit supervision to keep the model constantly focused on cloth-irrelevant areas, existing methods are still hampered by the disruption of clothing variations. To solve the above issues, we propose an Identity-aware Dual-constraint Network (IDNet) for the CC-ReID task. Specifically, to help the model extract cloth-irrelevant clues, we propose a Clothes Diversity Augmentation (CDA), which generates more realistic cloth-changing samples by enriching the clothing color while preserving the texture. In addition, a Multi-scale Constraint Block (MCB) is designed, which extracts fine-grained identity-related features and effectively transfers cloth-irrelevant knowledge. Moreover, a Counterfactual-guided Attention Module (CAM) is presented, which learns cloth-irrelevant features from channel and space dimensions and utilizes the counterfactual intervention for supervising the attention map to highlight identity-related regions. Finally, a Semantic Alignment Constraint (SAC) is designed to facilitate high-level semantic feature interaction. Comprehensive experiments on four CC-ReID datasets indicate that our method outperforms prior state-of-the-art approaches.
Abstract:Cloth-changing Person Re-Identification (CC-ReID) is a challenging task that aims to retrieve the target person across multiple surveillance cameras when clothing changes might happen. Despite recent progress in CC-ReID, existing approaches are still hindered by the interference of clothing variations since they lack effective constraints to keep the model consistently focused on clothing-irrelevant regions. To address this issue, we present a Semantic-aware Consistency Network (SCNet) to learn identity-related semantic features by proposing effective consistency constraints. Specifically, we generate the black-clothing image by erasing pixels in the clothing area, which explicitly mitigates the interference from clothing variations. In addition, to fully exploit the fine-grained identity information, a head-enhanced attention module is introduced, which learns soft attention maps by utilizing the proposed part-based matching loss to highlight head information. We further design a semantic consistency loss to facilitate the learning of high-level identity-related semantic features, forcing the model to focus on semantically consistent cloth-irrelevant regions. By using the consistency constraint, our model does not require any extra auxiliary segmentation module to generate the black-clothing image or locate the head region during the inference stage. Extensive experiments on four cloth-changing person Re-ID datasets (LTCC, PRCC, Vc-Clothes, and DeepChange) demonstrate that our proposed SCNet makes significant improvements over prior state-of-the-art approaches. Our code is available at: https://github.com/Gpn-star/SCNet.