Abstract:Cloth-Changing Person Re-Identification (CC-ReID) aims to accurately identify the target person in more realistic surveillance scenarios, where pedestrians usually change their clothing. Despite great progress, limited cloth-changing training samples in existing CC-ReID datasets still prevent the model from adequately learning cloth-irrelevant features. In addition, due to the absence of explicit supervision to keep the model constantly focused on cloth-irrelevant areas, existing methods are still hampered by the disruption of clothing variations. To solve the above issues, we propose an Identity-aware Dual-constraint Network (IDNet) for the CC-ReID task. Specifically, to help the model extract cloth-irrelevant clues, we propose a Clothes Diversity Augmentation (CDA), which generates more realistic cloth-changing samples by enriching the clothing color while preserving the texture. In addition, a Multi-scale Constraint Block (MCB) is designed, which extracts fine-grained identity-related features and effectively transfers cloth-irrelevant knowledge. Moreover, a Counterfactual-guided Attention Module (CAM) is presented, which learns cloth-irrelevant features from channel and space dimensions and utilizes the counterfactual intervention for supervising the attention map to highlight identity-related regions. Finally, a Semantic Alignment Constraint (SAC) is designed to facilitate high-level semantic feature interaction. Comprehensive experiments on four CC-ReID datasets indicate that our method outperforms prior state-of-the-art approaches.
Abstract:Cloth-changing Person Re-Identification (CC-ReID) is a challenging task that aims to retrieve the target person across multiple surveillance cameras when clothing changes might happen. Despite recent progress in CC-ReID, existing approaches are still hindered by the interference of clothing variations since they lack effective constraints to keep the model consistently focused on clothing-irrelevant regions. To address this issue, we present a Semantic-aware Consistency Network (SCNet) to learn identity-related semantic features by proposing effective consistency constraints. Specifically, we generate the black-clothing image by erasing pixels in the clothing area, which explicitly mitigates the interference from clothing variations. In addition, to fully exploit the fine-grained identity information, a head-enhanced attention module is introduced, which learns soft attention maps by utilizing the proposed part-based matching loss to highlight head information. We further design a semantic consistency loss to facilitate the learning of high-level identity-related semantic features, forcing the model to focus on semantically consistent cloth-irrelevant regions. By using the consistency constraint, our model does not require any extra auxiliary segmentation module to generate the black-clothing image or locate the head region during the inference stage. Extensive experiments on four cloth-changing person Re-ID datasets (LTCC, PRCC, Vc-Clothes, and DeepChange) demonstrate that our proposed SCNet makes significant improvements over prior state-of-the-art approaches. Our code is available at: https://github.com/Gpn-star/SCNet.