Abstract:Opinion summarisation aims to summarise the salient information and opinions presented in documents such as product reviews, discussion forums, and social media texts into short summaries that enable users to effectively understand the opinions therein. Generating biased summaries has the risk of potentially swaying public opinion. Previous studies focused on studying bias in opinion summarisation using extractive models, but limited research has paid attention to abstractive summarisation models. In this study, using political bias as a case study, we first establish a methodology to quantify bias in abstractive models, then trace it from the pre-trained models to the task of summarising social media opinions using different models and adaptation methods. We find that most models exhibit intrinsic bias. Using a social media text summarisation dataset and contrasting various adaptation methods, we find that tuning a smaller number of parameters is less biased compared to standard fine-tuning; however, the diversity of topics in training data used for fine-tuning is critical.
Abstract:Opinion summarisation is a task that aims to condense the information presented in the source documents while retaining the core message and opinions. A summary that only represents the majority opinions will leave the minority opinions unrepresented in the summary. In this paper, we use the stance towards a certain target as an opinion. We study bias in opinion summarisation from the perspective of opinion diversity, which measures whether the model generated summary can cover a diverse set of opinions. In addition, we examine opinion similarity, a measure of how closely related two opinions are in terms of their stance on a given topic, and its relationship with opinion diversity. Through the lens of stances towards a topic, we examine opinion diversity and similarity using three debatable topics under COVID-19. Experimental results on these topics revealed that a higher degree of similarity of opinions did not indicate good diversity or fairly cover the various opinions originally presented in the source documents. We found that BART and ChatGPT can better capture diverse opinions presented in the source documents.
Abstract:Deep neural networks have shown promise in several domains, and the learned task-specific information is implicitly stored in the network parameters. It will be vital to utilize representations from these networks for downstream tasks such as continual learning. In this paper, we introduce the notion of {\em flashcards} that are visual representations to {\em capture} the encoded knowledge of a network, as a function of random image patterns. We demonstrate the effectiveness of flashcards in capturing representations and show that they are efficient replay methods for general and task agnostic continual learning setting. Thus, while adapting to a new task, a limited number of constructed flashcards, help to prevent catastrophic forgetting of the previously learned tasks. Most interestingly, such flashcards neither require external memory storage nor need to be accumulated over multiple tasks and only need to be constructed just before learning the subsequent new task, irrespective of the number of tasks trained before and are hence task agnostic. We first demonstrate the efficacy of flashcards in capturing knowledge representation from a trained network, and empirically validate the efficacy of flashcards on a variety of continual learning tasks: continual unsupervised reconstruction, continual denoising, and new-instance learning classification, using a number of heterogeneous benchmark datasets. These studies also indicate that continual learning algorithms with flashcards as the replay strategy perform better than other state-of-the-art replay methods, and exhibits on par performance with the best possible baseline using coreset sampling, with the least additional computational complexity and storage.