Abstract:The interactions between human and objects are important for recognizing object-centric actions. Existing methods usually adopt a two-stage pipeline, where object proposals are first detected using a pretrained detector, and then are fed to an action recognition model for extracting video features and learning the object relations for action recognition. However, since the action prior is unknown in the object detection stage, important objects could be easily overlooked, leading to inferior action recognition performance. In this paper, we propose an end-to-end object-centric action recognition framework that simultaneously performs Detection And Interaction Reasoning in one stage. Particularly, after extracting video features with a base network, we create three modules for concurrent object detection and interaction reasoning. First, a Patch-based Object Decoder generates proposals from video patch tokens. Then, an Interactive Object Refining and Aggregation identifies important objects for action recognition, adjusts proposal scores based on position and appearance, and aggregates object-level info into a global video representation. Lastly, an Object Relation Modeling module encodes object relations. These three modules together with the video feature extractor can be trained jointly in an end-to-end fashion, thus avoiding the heavy reliance on an off-the-shelf object detector, and reducing the multi-stage training burden. We conduct experiments on two datasets, Something-Else and Ikea-Assembly, to evaluate the performance of our proposed approach on conventional, compositional, and few-shot action recognition tasks. Through in-depth experimental analysis, we show the crucial role of interactive objects in learning for action recognition, and we can outperform state-of-the-art methods on both datasets.
Abstract:In recent years, Text-to-Image (T2I) models have been extensively studied, especially with the emergence of diffusion models that achieve state-of-the-art results on T2I synthesis tasks. However, existing benchmarks heavily rely on subjective human evaluation, limiting their ability to holistically assess the model's capabilities. Furthermore, there is a significant gap between efforts in developing new T2I architectures and those in evaluation. To address this, we introduce HRS-Bench, a concrete evaluation benchmark for T2I models that is Holistic, Reliable, and Scalable. Unlike existing bench-marks that focus on limited aspects, HRS-Bench measures 13 skills that can be categorized into five major categories: accuracy, robustness, generalization, fairness, and bias. In addition, HRS-Bench covers 50 scenarios, including fashion, animals, transportation, food, and clothes. We evaluate nine recent large-scale T2I models using metrics that cover a wide range of skills. A human evaluation aligned with 95% of our evaluations on average was conducted to probe the effectiveness of HRS-Bench. Our experiments demonstrate that existing models often struggle to generate images with the desired count of objects, visual text, or grounded emotions. We hope that our benchmark help ease future text-to-image generation research. The code and data are available at https://eslambakr.github.io/hrsbench.github.io
Abstract:Most pre-trained learning systems are known to suffer from bias, which typically emerges from the data, the model, or both. Measuring and quantifying bias and its sources is a challenging task and has been extensively studied in image captioning. Despite the significant effort in this direction, we observed that existing metrics lack consistency in the inclusion of the visual signal. In this paper, we introduce a new bias assessment metric, dubbed $ImageCaptioner^2$, for image captioning. Instead of measuring the absolute bias in the model or the data, $ImageCaptioner^2$ pay more attention to the bias introduced by the model w.r.t the data bias, termed bias amplification. Unlike the existing methods, which only evaluate the image captioning algorithms based on the generated captions only, $ImageCaptioner^2$ incorporates the image while measuring the bias. In addition, we design a formulation for measuring the bias of generated captions as prompt-based image captioning instead of using language classifiers. Finally, we apply our $ImageCaptioner^2$ metric across 11 different image captioning architectures on three different datasets, i.e., MS-COCO caption dataset, Artemis V1, and Artemis V2, and on three different protected attributes, i.e., gender, race, and emotions. Consequently, we verify the effectiveness of our $ImageCaptioner^2$ metric by proposing AnonymousBench, which is a novel human evaluation paradigm for bias metrics. Our metric shows significant superiority over the recent bias metric; LIC, in terms of human alignment, where the correlation scores are 80% and 54% for our metric and LIC, respectively. The code is available at https://eslambakr.github.io/imagecaptioner2.github.io/.