Abstract:Understanding the general priniciples behind transformer models remains a complex endeavor. Experiments with probing and disentangling features using sparse autoencoders (SAE) suggest that these models might manage linear features embedded as directions in the residual stream. This paper explores the resemblance between decoder-only transformer architecture and vector symbolic architectures (VSA) and presents experiments indicating that GPT-2 uses mechanisms involving nearly orthogonal vector bundling and binding operations similar to VSA for computation and communication between layers. It further shows that these principles help explain a significant portion of the actual neural weights.
Abstract:In clinical In-Vitro Fertilization (IVF), identifying the most viable embryo for transfer is important to increasing the likelihood of a successful pregnancy. Traditionally, this process involves embryologists manually assessing embryos' static morphological features at specific intervals using light microscopy. This manual evaluation is not only time-intensive and costly, due to the need for expert analysis, but also inherently subjective, leading to variability in the selection process. To address these challenges, we develop a multimodal model that leverages both time-lapse video data and Electronic Health Records (EHRs) to predict embryo viability. One of the primary challenges of our research is to effectively combine time-lapse video and EHR data, owing to their inherent differences in modality. We comprehensively analyze our multimodal model with various modality inputs and integration approaches. Our approach will enable fast and automated embryo viability predictions in scale for clinical IVF.
Abstract:With a constant increase of learned parameters, modern neural language models become increasingly more powerful. Yet, explaining these complex model's behavior remains a widely unsolved problem. In this paper, we discuss the role interactive visualization can play in explaining NLP models (XNLP). We motivate the use of visualization in relation to target users and common NLP pipelines. We also present several use cases to provide concrete examples on XNLP with visualization. Finally, we point out an extensive list of research opportunities in this field.
Abstract:Breaking news and first-hand reports often trend on social media platforms before traditional news outlets cover them. The real-time analysis of posts on such platforms can reveal valuable and timely insights for journalists, politicians, business analysts, and first responders, but the high number and diversity of new posts pose a challenge. In this work, we present an interactive system that enables the visual analysis of streaming social media data on a large scale in real-time. We propose an efficient and explainable dynamic clustering algorithm that powers a continuously updated visualization of the current thematic landscape as well as detailed visual summaries of specific topics of interest. Our parallel clustering strategy provides an adaptive stream with a digestible but diverse selection of recent posts related to relevant topics. We also integrate familiar visual metaphors that are highly interlinked for enabling both explorative and more focused monitoring tasks. Analysts can gradually increase the resolution to dive deeper into particular topics. In contrast to previous work, our system also works with non-geolocated posts and avoids extensive preprocessing such as detecting events. We evaluated our dynamic clustering algorithm and discuss several use cases that show the utility of our system.
Abstract:Spherical k-Means is frequently used to cluster document collections because it performs reasonably well in many settings and is computationally efficient. However, the time complexity increases linearly with the number of clusters k, which limits the suitability of the algorithm for larger values of k depending on the size of the collection. Optimizations targeted at the Euclidean k-Means algorithm largely do not apply because the cosine distance is not a metric. We therefore propose an efficient indexing structure to improve the scalability of Spherical k-Means with respect to k. Our approach exploits the sparsity of the input vectors and the convergence behavior of k-Means to reduce the number of comparisons on each iteration significantly.
Abstract:Keyphrase extraction methods can provide insights into large collections of documents such as social media posts. Existing methods, however, are less suited for the real-time analysis of streaming data, because they are computationally too expensive or require restrictive constraints regarding the structure of keyphrases. We propose an efficient approach to extract keyphrases from large document collections and show that the method also performs competitively on individual documents.
Abstract:Investigating relationships between variables in multi-dimensional data sets is a common task for data analysts and engineers. More specifically, it is often valuable to understand which ranges of which input variables lead to particular values of a given target variable. Unfortunately, with an increasing number of independent variables, this process may become cumbersome and time-consuming due to the many possible combinations that have to be explored. In this paper, we propose a novel approach to visualize correlations between input variables and a target output variable that scales to hundreds of variables. We developed a visual model based on neural networks that can be explored in a guided way to help analysts find and understand such correlations. First, we train a neural network to predict the target from the input variables. Then, we visualize the inner workings of the resulting model to help understand relations within the data set. We further introduce a new regularization term for the backpropagation algorithm that encourages the neural network to learn representations that are easier to interpret visually. We apply our method to artificial and real-world data sets to show its utility.
Abstract:Storyline visualizations are an effective means to present the evolution of plots and reveal the scenic interactions among characters. However, the design of storyline visualizations is a difficult task as users need to balance between aesthetic goals and narrative constraints. Despite that the optimization-based methods have been improved significantly in terms of producing aesthetic and legible layouts, the existing (semi-) automatic methods are still limited regarding 1) efficient exploration of the storyline design space and 2) flexible customization of storyline layouts. In this work, we propose a reinforcement learning framework to train an AI agent that assists users in exploring the design space efficiently and generating well-optimized storylines. Based on the framework, we introduce PlotThread, an authoring tool that integrates a set of flexible interactions to support easy customization of storyline visualizations. To seamlessly integrate the AI agent into the authoring process, we employ a mixed-initiative approach where both the agent and designers work on the same canvas to boost the collaborative design of storylines. We evaluate the reinforcement learning model through qualitative and quantitative experiments and demonstrate the usage of PlotThread using a collection of use cases.