DAMO Academy, Alibaba Group
Abstract:Image aesthetics assessment (IAA) is attracting wide interest with the prevalence of social media. The problem is challenging due to its subjective and ambiguous nature. Instead of directly extracting aesthetic features solely from the image, user comments associated with an image could potentially provide complementary knowledge that is useful for IAA. With existing large-scale pre-trained models demonstrating strong capabilities in extracting high-quality transferable visual and textual features, learnable queries are shown to be effective in extracting useful features from the pre-trained visual features. Therefore, in this paper, we propose MMLQ, which utilizes multi-modal learnable queries to extract aesthetics-related features from multi-modal pre-trained features. Extensive experimental results demonstrate that MMLQ achieves new state-of-the-art performance on multi-modal IAA, beating previous methods by 7.7% and 8.3% in terms of SRCC and PLCC, respectively.
Abstract:Human visual imagination usually begins with analogies or rough sketches. For example, given an image with a girl playing guitar before a building, one may analogously imagine how it seems like if Iron Man playing guitar before Pyramid in Egypt. Nonetheless, visual condition may not be precisely aligned with the imaginary result indicated by text prompt, and existing layout-controllable text-to-image (T2I) generation models is prone to producing degraded generated results with obvious artifacts. To address this issue, we present a novel T2I generation method dubbed SmartControl, which is designed to modify the rough visual conditions for adapting to text prompt. The key idea of our SmartControl is to relax the visual condition on the areas that are conflicted with text prompts. In specific, a Control Scale Predictor (CSP) is designed to identify the conflict regions and predict the local control scales, while a dataset with text prompts and rough visual conditions is constructed for training CSP. It is worth noting that, even with a limited number (e.g., 1,000~2,000) of training samples, our SmartControl can generalize well to unseen objects. Extensive experiments on four typical visual condition types clearly show the efficacy of our SmartControl against state-of-the-arts. Source code, pre-trained models, and datasets are available at https://github.com/liuxiaoyu1104/SmartControl.
Abstract:Text-to-image diffusion models (T2I) have demonstrated unprecedented capabilities in creating realistic and aesthetic images. On the contrary, text-to-video diffusion models (T2V) still lag far behind in frame quality and text alignment, owing to insufficient quality and quantity of training videos. In this paper, we introduce VideoElevator, a training-free and plug-and-play method, which elevates the performance of T2V using superior capabilities of T2I. Different from conventional T2V sampling (i.e., temporal and spatial modeling), VideoElevator explicitly decomposes each sampling step into temporal motion refining and spatial quality elevating. Specifically, temporal motion refining uses encapsulated T2V to enhance temporal consistency, followed by inverting to the noise distribution required by T2I. Then, spatial quality elevating harnesses inflated T2I to directly predict less noisy latent, adding more photo-realistic details. We have conducted experiments in extensive prompts under the combination of various T2V and T2I. The results show that VideoElevator not only improves the performance of T2V baselines with foundational T2I, but also facilitates stylistic video synthesis with personalized T2I. Our code is available at https://github.com/YBYBZhang/VideoElevator.
Abstract:In this paper, we present DreaMoving, a diffusion-based controllable video generation framework to produce high-quality customized human videos. Specifically, given target identity and posture sequences, DreaMoving can generate a video of the target identity moving or dancing anywhere driven by the posture sequences. To this end, we propose a Video ControlNet for motion-controlling and a Content Guider for identity preserving. The proposed model is easy to use and can be adapted to most stylized diffusion models to generate diverse results. The project page is available at https://dreamoving.github.io/dreamoving
Abstract:Realistic image super-resolution (Real-ISR) aims to reproduce perceptually realistic image details from a low-quality input. The commonly used adversarial training based Real-ISR methods often introduce unnatural visual artifacts and fail to generate realistic textures for natural scene images. The recently developed generative stable diffusion models provide a potential solution to Real-ISR with pre-learned strong image priors. However, the existing methods along this line either fail to keep faithful pixel-wise image structures or resort to extra skipped connections to reproduce details, which requires additional training in image space and limits their extension to other related tasks in latent space such as image stylization. In this work, we propose a pixel-aware stable diffusion (PASD) network to achieve robust Real-ISR as well as personalized stylization. In specific, a pixel-aware cross attention module is introduced to enable diffusion models perceiving image local structures in pixel-wise level, while a degradation removal module is used to extract degradation insensitive features to guide the diffusion process together with image high level information. By simply replacing the base diffusion model with a personalized one, our method can generate diverse stylized images without the need to collect pairwise training data. PASD can be easily integrated into existing diffusion models such as Stable Diffusion. Experiments on Real-ISR and personalized stylization demonstrate the effectiveness of our proposed approach. The source code and models can be found at \url{https://github.com/yangxy/PASD}.
Abstract:Image aesthetics assessment (IAA) aims to estimate the aesthetics of images. Depending on the content of an image, diverse criteria need to be selected to assess its aesthetics. Existing works utilize pre-trained vision backbones based on content knowledge to learn image aesthetics. However, training those backbones is time-consuming and suffers from attention dispersion. Inspired by learnable queries in vision-language alignment, we propose the Image Aesthetics Assessment via Learnable Queries (IAA-LQ) approach. It adapts learnable queries to extract aesthetic features from pre-trained image features obtained from a frozen image encoder. Extensive experiments on real-world data demonstrate the advantages of IAA-LQ, beating the best state-of-the-art method by 2.2% and 2.1% in terms of SRCC and PLCC, respectively.
Abstract:Low-Light Video Enhancement (LLVE) has received considerable attention in recent years. One of the critical requirements of LLVE is inter-frame brightness consistency, which is essential for maintaining the temporal coherence of the enhanced video. However, most existing single-image-based methods fail to address this issue, resulting in flickering effect that degrades the overall quality after enhancement. Moreover, 3D Convolution Neural Network (CNN)-based methods, which are designed for video to maintain inter-frame consistency, are computationally expensive, making them impractical for real-time applications. To address these issues, we propose an efficient pipeline named FastLLVE that leverages the Look-Up-Table (LUT) technique to maintain inter-frame brightness consistency effectively. Specifically, we design a learnable Intensity-Aware LUT (IA-LUT) module for adaptive enhancement, which addresses the low-dynamic problem in low-light scenarios. This enables FastLLVE to perform low-latency and low-complexity enhancement operations while maintaining high-quality results. Experimental results on benchmark datasets demonstrate that our method achieves the State-Of-The-Art (SOTA) performance in terms of both image quality and inter-frame brightness consistency. More importantly, our FastLLVE can process 1,080p videos at $\mathit{50+}$ Frames Per Second (FPS), which is $\mathit{2 \times}$ faster than SOTA CNN-based methods in inference time, making it a promising solution for real-time applications. The code is available at https://github.com/Wenhao-Li-777/FastLLVE.
Abstract:Retouching images is an essential aspect of enhancing the visual appeal of photos. Although users often share common aesthetic preferences, their retouching methods may vary based on their individual preferences. Therefore, there is a need for white-box approaches that produce satisfying results and enable users to conveniently edit their images simultaneously. Recent white-box retouching methods rely on cascaded global filters that provide image-level filter arguments but cannot perform fine-grained retouching. In contrast, colorists typically use a divide-and-conquer approach, performing a series of region-specific fine-grained enhancements when using traditional tools like Davinci Resolve. We draw on this insight to develop a white-box framework for photo retouching using parallel region-specific filters, called RSFNet. Our model generates filter arguments (e.g., saturation, contrast, hue) and attention maps of regions for each filter simultaneously. Instead of cascading filters, RSFNet employs linear summations of filters, allowing for a more diverse range of filter classes that can be trained more easily. Our experiments demonstrate that RSFNet achieves state-of-the-art results, offering satisfying aesthetic appeal and greater user convenience for editable white-box retouching.
Abstract:In supervised image restoration tasks, one key issue is how to obtain the aligned high-quality (HQ) and low-quality (LQ) training image pairs. Unfortunately, such HQ-LQ training pairs are hard to capture in practice, and hard to synthesize due to the complex unknown degradation in the wild. While several sophisticated degradation models have been manually designed to synthesize LQ images from their HQ counterparts, the distribution gap between the synthesized and real-world LQ images remains large. We propose a new approach to synthesizing realistic image restoration training pairs using the emerging denoising diffusion probabilistic model (DDPM). First, we train a DDPM, which could convert a noisy input into the desired LQ image, with a large amount of collected LQ images, which define the target data distribution. Then, for a given HQ image, we synthesize an initial LQ image by using an off-the-shelf degradation model, and iteratively add proper Gaussian noises to it. Finally, we denoise the noisy LQ image using the pre-trained DDPM to obtain the final LQ image, which falls into the target distribution of real-world LQ images. Thanks to the strong capability of DDPM in distribution approximation, the synthesized HQ-LQ image pairs can be used to train robust models for real-world image restoration tasks, such as blind face image restoration and blind image super-resolution. Experiments demonstrated the superiority of our proposed approach to existing degradation models. Code and data will be released.
Abstract:Automatic image colorization is a particularly challenging problem. Due to the high illness of the problem and multi-modal uncertainty, directly training a deep neural network usually leads to incorrect semantic colors and low color richness. Existing transformer-based methods can deliver better results but highly depend on hand-crafted dataset-level empirical distribution priors. In this work, we propose DDColor, a new end-to-end method with dual decoders, for image colorization. More specifically, we design a multi-scale image decoder and a transformer-based color decoder. The former manages to restore the spatial resolution of the image, while the latter establishes the correlation between semantic representations and color queries via cross-attention. The two decoders incorporate to learn semantic-aware color embedding by leveraging the multi-scale visual features. With the help of these two decoders, our method succeeds in producing semantically consistent and visually plausible colorization results without any additional priors. In addition, a simple but effective colorfulness loss is introduced to further improve the color richness of generated results. Our extensive experiments demonstrate that the proposed DDColor achieves significantly superior performance to existing state-of-the-art works both quantitatively and qualitatively. Codes will be made publicly available at https://github.com/piddnad/DDColor.