Abstract:We utilize the Feature Decoupling Distributed (FDD) method to enhance the capability of deep learning to fit the Nonlinear Schrodinger Equation (NLSE), significantly reducing the NLSE loss compared to non decoupling model.
Abstract:Image aesthetics assessment (IAA) is attracting wide interest with the prevalence of social media. The problem is challenging due to its subjective and ambiguous nature. Instead of directly extracting aesthetic features solely from the image, user comments associated with an image could potentially provide complementary knowledge that is useful for IAA. With existing large-scale pre-trained models demonstrating strong capabilities in extracting high-quality transferable visual and textual features, learnable queries are shown to be effective in extracting useful features from the pre-trained visual features. Therefore, in this paper, we propose MMLQ, which utilizes multi-modal learnable queries to extract aesthetics-related features from multi-modal pre-trained features. Extensive experimental results demonstrate that MMLQ achieves new state-of-the-art performance on multi-modal IAA, beating previous methods by 7.7% and 8.3% in terms of SRCC and PLCC, respectively.
Abstract:Controllable 3D indoor scene synthesis stands at the forefront of technological progress, offering various applications like gaming, film, and augmented/virtual reality. The capability to stylize and de-couple objects within these scenarios is a crucial factor, providing an advanced level of control throughout the editing process. This control extends not just to manipulating geometric attributes like translation and scaling but also includes managing appearances, such as stylization. Current methods for scene stylization are limited to applying styles to the entire scene, without the ability to separate and customize individual objects. Addressing the intricacies of this challenge, we introduce a unique pipeline designed for synthesis 3D indoor scenes. Our approach involves strategically placing objects within the scene, utilizing information from professionally designed bounding boxes. Significantly, our pipeline prioritizes maintaining style consistency across multiple objects within the scene, ensuring a cohesive and visually appealing result aligned with the desired aesthetic. The core strength of our pipeline lies in its ability to generate 3D scenes that are not only visually impressive but also exhibit features like photorealism, multi-view consistency, and diversity. These scenes are crafted in response to various natural language prompts, demonstrating the versatility and adaptability of our model.
Abstract:We present a method named iComMa to address the 6D pose estimation problem in computer vision. The conventional pose estimation methods typically rely on the target's CAD model or necessitate specific network training tailored to particular object classes. Some existing methods address mesh-free 6D pose estimation by employing the inversion of a Neural Radiance Field (NeRF), aiming to overcome the aforementioned constraints. However, it still suffers from adverse initializations. By contrast, we model the pose estimation as the problem of inverting the 3D Gaussian Splatting (3DGS) with both the comparing and matching loss. In detail, a render-and-compare strategy is adopted for the precise estimation of poses. Additionally, a matching module is designed to enhance the model's robustness against adverse initializations by minimizing the distances between 2D keypoints. This framework systematically incorporates the distinctive characteristics and inherent rationale of render-and-compare and matching-based approaches. This comprehensive consideration equips the framework to effectively address a broader range of intricate and challenging scenarios, including instances with substantial angular deviations, all while maintaining a high level of prediction accuracy. Experimental results demonstrate the superior precision and robustness of our proposed jointly optimized framework when evaluated on synthetic and complex real-world data in challenging scenarios.
Abstract:Image aesthetics assessment (IAA) aims to estimate the aesthetics of images. Depending on the content of an image, diverse criteria need to be selected to assess its aesthetics. Existing works utilize pre-trained vision backbones based on content knowledge to learn image aesthetics. However, training those backbones is time-consuming and suffers from attention dispersion. Inspired by learnable queries in vision-language alignment, we propose the Image Aesthetics Assessment via Learnable Queries (IAA-LQ) approach. It adapts learnable queries to extract aesthetic features from pre-trained image features obtained from a frozen image encoder. Extensive experiments on real-world data demonstrate the advantages of IAA-LQ, beating the best state-of-the-art method by 2.2% and 2.1% in terms of SRCC and PLCC, respectively.
Abstract:This paper investigates an open research task of reconstructing and generating 3D point clouds. Most existing works of 3D generative models directly take the Gaussian prior as input for the decoder to generate 3D point clouds, which fail to learn disentangled latent codes, leading noisy interpolated results. Most of the GAN-based models fail to discriminate the local geometries, resulting in the point clouds generated not evenly distributed at the object surface, hence degrading the point cloud generation quality. Moreover, prevailing methods adopt computation-intensive frameworks, such as flow-based models and Markov chains, which take plenty of time and resources in the training phase. To resolve these limitations, this paper proposes a unified style-aware network architecture combining both point-wise distance loss and adversarial loss, StarNet which is able to reconstruct and generate high-fidelity and even 3D point clouds using a mapping network that can effectively disentangle the Gaussian prior from input's high-level attributes in the mapped latent space to generate realistic interpolated objects. Experimental results demonstrate that our framework achieves comparable state-of-the-art performance on various metrics in the point cloud reconstruction and generation tasks, but is more lightweight in model size, requires much fewer parameters and less time for model training.
Abstract:We propose a method to compress full-resolution video sequences with implicit neural representations. Each frame is represented as a neural network that maps coordinate positions to pixel values. We use a separate implicit network to modulate the coordinate inputs, which enables efficient motion compensation between frames. Together with a small residual network, this allows us to efficiently compress P-frames relative to the previous frame. We further lower the bitrate by storing the network weights with learned integer quantization. Our method, which we call implicit pixel flow (IPF), offers several simplifications over established neural video codecs: it does not require the receiver to have access to a pretrained neural network, does not use expensive interpolation-based warping operations, and does not require a separate training dataset. We demonstrate the feasibility of neural implicit compression on image and video data.
Abstract:We introduce a video compression algorithm based on instance-adaptive learning. On each video sequence to be transmitted, we finetune a pretrained compression model. The optimal parameters are transmitted to the receiver along with the latent code. By entropy-coding the parameter updates under a suitable mixture model prior, we ensure that the network parameters can be encoded efficiently. This instance-adaptive compression algorithm is agnostic about the choice of base model and has the potential to improve any neural video codec. On UVG, HEVC, and Xiph datasets, our codec improves the performance of a low-latency scale-space flow model by between 21% and 26% BD-rate savings, and that of a state-of-the-art B-frame model by 17 to 20% BD-rate savings. We also demonstrate that instance-adaptive finetuning improves the robustness to domain shift. Finally, our approach reduces the capacity requirements on compression models. We show that it enables a state-of-the-art performance even after reducing the network size by 72%.