Abstract:Recent state-of-the-art authorship attribution methods learn authorship representations of texts in a latent, non-interpretable space, hindering their usability in real-world applications. Our work proposes a novel approach to interpreting these learned embeddings by identifying representative points in the latent space and utilizing LLMs to generate informative natural language descriptions of the writing style of each point. We evaluate the alignment of our interpretable space with the latent one and find that it achieves the best prediction agreement compared to other baselines. Additionally, we conduct a human evaluation to assess the quality of these style descriptions, validating their utility as explanations for the latent space. Finally, we investigate whether human performance on the challenging AA task improves when aided by our system's explanations, finding an average improvement of around +20% in accuracy.
Abstract:Explanations form the foundation of knowledge sharing and build upon communication principles, social dynamics, and learning theories. We focus specifically on conversational approaches for explanations because the context is highly adaptive and interactive. Our research leverages previous work on explanatory acts, a framework for understanding the different strategies that explainers and explainees employ in a conversation to both explain, understand, and engage with the other party. We use the 5-Levels dataset was constructed from the WIRED YouTube series by Wachsmuth et al., and later annotated by Booshehri et al. with explanatory acts. These annotations provide a framework for understanding how explainers and explainees structure their response when crafting a response. With the rise of generative AI in the past year, we hope to better understand the capabilities of Large Language Models (LLMs) and how they can augment expert explainer's capabilities in conversational settings. To achieve this goal, the 5-Levels dataset (We use Booshehri et al.'s 2023 annotated dataset with explanatory acts.) allows us to audit the ability of LLMs in engaging in explanation dialogues. To evaluate the effectiveness of LLMs in generating explainer responses, we compared 3 different strategies, we asked human annotators to evaluate 3 different strategies: human explainer response, GPT4 standard response, GPT4 response with Explanation Moves.
Abstract:The New York Times Connections game has emerged as a popular and challenging pursuit for word puzzle enthusiasts. We collect 200 Connections games to evaluate the performance of state-of-the-art large language models (LLMs) against expert and novice human players. Our results show that even the best-performing LLM, GPT-4o, which has otherwise shown impressive reasoning abilities on a wide variety of benchmarks, can only fully solve 8% of the games. Compared to GPT-4o, novice and expert players perform better, with expert human players significantly outperforming GPT-4o. To deepen our understanding we create a taxonomy of the knowledge types required to successfully categorize words in the Connections game, revealing that LLMs struggle with associative, encyclopedic, and linguistic knowledge. Our findings establish the New York Times Connections game as a challenging benchmark for evaluating abstract reasoning capabilities in humans and AI systems.
Abstract:Large Vision-Language models (VLMs) have demonstrated strong reasoning capabilities in tasks requiring a fine-grained understanding of literal images and text, such as visual question-answering or visual entailment. However, there has been little exploration of these models' capabilities when presented with images and captions containing figurative phenomena such as metaphors or humor, the meaning of which is often implicit. To close this gap, we propose a new task and a high-quality dataset: Visual Figurative Language Understanding with Textual Explanations (V-FLUTE). We frame the visual figurative language understanding problem as an explainable visual entailment task, where the model has to predict whether the image (premise) entails a claim (hypothesis) and justify the predicted label with a textual explanation. Using a human-AI collaboration framework, we build a high-quality dataset, V-FLUTE, that contains 6,027 <image, claim, label, explanation> instances spanning five diverse multimodal figurative phenomena: metaphors, similes, idioms, sarcasm, and humor. The figurative phenomena can be present either in the image, the caption, or both. We further conduct both automatic and human evaluations to assess current VLMs' capabilities in understanding figurative phenomena.
Abstract:Digital education has gained popularity in the last decade, especially after the COVID-19 pandemic. With the improving capabilities of large language models to reason and communicate with users, envisioning intelligent tutoring systems (ITSs) that can facilitate self-learning is not very far-fetched. One integral component to fulfill this vision is the ability to give accurate and effective feedback via hints to scaffold the learning process. In this survey article, we present a comprehensive review of prior research on hint generation, aiming to bridge the gap between research in education and cognitive science, and research in AI and Natural Language Processing. Informed by our findings, we propose a formal definition of the hint generation task, and discuss the roadmap of building an effective hint generation system aligned with the formal definition, including open challenges, future directions and ethical considerations.
Abstract:Recognizing fallacies is crucial for ensuring the quality and validity of arguments across various domains. However, computational fallacy recognition faces challenges due to the diverse genres, domains, and types of fallacies found in datasets. This leads to a highly multiclass, and even multi-label, setup with substantial class imbalance. In this study, we aim to enhance existing models for fallacy recognition by incorporating additional context and by leveraging large language models to generate synthetic data, thus increasing the representation of the infrequent classes. We experiment with GPT3.5 to generate synthetic examples and we examine the impact of prompt settings for this. Moreover, we explore zero-shot and few-shot scenarios to evaluate the effectiveness of using the generated examples for training smaller models within a unified fallacy recognition framework. Furthermore, we analyze the overlap between the synthetic data and existing fallacy datasets. Finally, we investigate the usefulness of providing supplementary context for detecting fallacy types that need such context, e.g., diversion fallacies. Our evaluation results demonstrate consistent improvements across fallacy types, datasets, and generators.
Abstract:In the last decade, the United States has lost more than 500,000 people from an overdose involving prescription and illicit opioids (https://www.cdc.gov/drugoverdose/epidemic/index.html) making it a national public health emergency (USDHHS, 2017). To more effectively prevent unintentional opioid overdoses, medical practitioners require robust and timely tools that can effectively identify at-risk patients. Community-based social media platforms such as Reddit allow self-disclosure for users to discuss otherwise sensitive drug-related behaviors, often acting as indicators for opioid use disorder. Towards this, we present a moderate size corpus of 2500 opioid-related posts from various subreddits spanning 6 different phases of opioid use: Medical Use, Misuse, Addiction, Recovery, Relapse, Not Using. For every post, we annotate span-level extractive explanations and crucially study their role both in annotation quality and model development. We evaluate several state-of-the-art models in a supervised, few-shot, or zero-shot setting. Experimental results and error analysis show that identifying the phases of opioid use disorder is highly contextual and challenging. However, we find that using explanations during modeling leads to a significant boost in classification accuracy demonstrating their beneficial role in a high-stakes domain such as studying the opioid use disorder continuum. The dataset will be made available for research on Github in the formal version.
Abstract:Natural language instructions are a powerful interface for editing the outputs of text-to-image diffusion models. However, several challenges need to be addressed: 1) underspecification (the need to model the implicit meaning of instructions) 2) grounding (the need to localize where the edit has to be performed), 3) faithfulness (the need to preserve the elements of the image not affected by the edit instruction). Current approaches focusing on image editing with natural language instructions rely on automatically generated paired data, which, as shown in our investigation, is noisy and sometimes nonsensical, exacerbating the above issues. Building on recent advances in segmentation, Chain-of-Thought prompting, and visual question answering, we significantly improve the quality of the paired data. In addition, we enhance the supervision signal by highlighting parts of the image that need to be changed by the instruction. The model fine-tuned on the improved data is capable of performing fine-grained object-centric edits better than state-of-the-art baselines, mitigating the problems outlined above, as shown by automatic and human evaluations. Moreover, our model is capable of generalizing to domains unseen during training, such as visual metaphors.
Abstract:Social norms fundamentally shape interpersonal communication. We present NormDial, a high-quality dyadic dialogue dataset with turn-by-turn annotations of social norm adherences and violations for Chinese and American cultures. Introducing the task of social norm observance detection, our dataset is synthetically generated in both Chinese and English using a human-in-the-loop pipeline by prompting large language models with a small collection of expert-annotated social norms. We show that our generated dialogues are of high quality through human evaluation and further evaluate the performance of existing large language models on this task. Our findings point towards new directions for understanding the nuances of social norms as they manifest in conversational contexts that span across languages and cultures.
Abstract:The development of large language models (LLMs) capable of following instructions and engaging in conversational interactions sparked increased interest in their utilization across various support tools. We investigate the utility of modern LLMs in assisting professional writers via an empirical user study (n=30). The design of our collaborative writing interface is grounded in the cognitive process model of writing that views writing as a goal-oriented thinking process encompassing non-linear cognitive activities: planning, translating, and reviewing. Participants are asked to submit a post-completion survey to provide feedback on the potential and pitfalls of LLMs as writing collaborators. Upon analyzing the writer-LLM interactions, we find that while writers seek LLM's help across all three types of cognitive activities, they find LLMs more helpful in translation and reviewing. Our findings from analyzing both the interactions and the survey responses highlight future research directions in creative writing assistance using LLMs.