Abstract:Generative text-to-image models, such as Stable Diffusion, have demonstrated a remarkable ability to generate diverse, high-quality images. However, they are surprisingly inept when it comes to rendering human hands, which are often anatomically incorrect or reside in the "uncanny valley". In this paper, we propose a method HandCraft for restoring such malformed hands. This is achieved by automatically constructing masks and depth images for hands as conditioning signals using a parametric model, allowing a diffusion-based image editor to fix the hand's anatomy and adjust its pose while seamlessly integrating the changes into the original image, preserving pose, color, and style. Our plug-and-play hand restoration solution is compatible with existing pretrained diffusion models, and the restoration process facilitates adoption by eschewing any fine-tuning or training requirements for the diffusion models. We also contribute MalHand datasets that contain generated images with a wide variety of malformed hands in several styles for hand detector training and hand restoration benchmarking, and demonstrate through qualitative and quantitative evaluation that HandCraft not only restores anatomical correctness but also maintains the integrity of the overall image.
Abstract:Long-tail learning has garnered widespread attention and achieved significant progress in recent times. However, even with pre-trained prior knowledge, models still exhibit weaker generalization performance on tail classes. The promising Sharpness-Aware Minimization (SAM) can effectively improve the generalization capability of models by seeking out flat minima in the loss landscape, which, however, comes at the cost of doubling the computational time. Since the update rule of SAM necessitates two consecutive (non-parallelizable) forward and backpropagation at each step. To address this issue, we propose a novel method called Random SAM prompt tuning (RSAM-PT) to improve the model generalization, requiring only one-step gradient computation at each step. Specifically, we search for the gradient descent direction within a random neighborhood of the parameters during each gradient update. To amplify the impact of tail-class samples and avoid overfitting, we employ the deferred re-weight scheme to increase the significance of tail-class samples. The classification accuracy of long-tailed data can be significantly improved by the proposed RSAM-PT, particularly for tail classes. RSAM-PT achieves the state-of-the-art performance of 90.3\%, 76.5\%, and 50.1\% on benchmark datasets CIFAR100-LT (IF 100), iNaturalist 2018, and Places-LT, respectively. The source code is temporarily available at https://github.com/Keke921/GNM-PT.
Abstract:Competitive debate is a comprehensive and complex computational argumentation task. Large Language Models (LLMs) encounter hallucinations and lack competitiveness in this task. To address these challenges, we introduce Agent for Debate (Agent4Debate), a dynamic, multi-agent framework based on LLMs designed to enhance their capabilities in competitive debate. Drawing inspiration from human behavior in debate preparation and execution, Agent4Debate employs a collaborative architecture where four specialized agents (Searcher, Analyzer, Writer, and Reviewer) dynamically interact and cooperate. These agents work throughout the debate process, covering multiple stages from initial research and argument formulation to rebuttal and summary. To comprehensively evaluate framework performance, we construct the Chinese Debate Arena, comprising 66 carefully selected Chinese debate motions. We recruite ten experienced human debaters and collect records of 200 debates involving Agent4Debate, baseline models, and humans. The evaluation employs the Debatrix automatic scoring system and professional human reviewers based on the established Debatrix-Elo and Human-Elo ranking. Experimental results indicate that the state-of-the-art Agent4Debate exhibits capabilities comparable to those of humans. Furthermore, ablation studies demonstrate the effectiveness of each component in the agent structure.
Abstract:Personalized Federated Learning (PFL) aims to acquire customized models for each client without disclosing raw data by leveraging the collective knowledge of distributed clients. However, the data collected in real-world scenarios is likely to follow a long-tailed distribution. For example, in the medical domain, it is more common for the number of general health notes to be much larger than those specifically relatedto certain diseases. The presence of long-tailed data can significantly degrade the performance of PFL models. Additionally, due to the diverse environments in which each client operates, data heterogeneity is also a classic challenge in federated learning. In this paper, we explore the joint problem of global long-tailed distribution and data heterogeneity in PFL and propose a method called Expert Collaborative Learning (ECL) to tackle this problem. Specifically, each client has multiple experts, and each expert has a different training subset, which ensures that each class, especially the minority classes, receives sufficient training. Multiple experts collaborate synergistically to produce the final prediction output. Without special bells and whistles, the vanilla ECL outperforms other state-of-the-art PFL methods on several benchmark datasets under different degrees of data heterogeneity and long-tailed distribution.
Abstract:Affective Computing (AC), integrating computer science, psychology, and cognitive science knowledge, aims to enable machines to recognize, interpret, and simulate human emotions.To create more value, AC can be applied to diverse scenarios, including social media, finance, healthcare, education, etc. Affective Computing (AC) includes two mainstream tasks, i.e., Affective Understanding (AU) and Affective Generation (AG). Fine-tuning Pre-trained Language Models (PLMs) for AU tasks has succeeded considerably. However, these models lack generalization ability, requiring specialized models for specific tasks. Additionally, traditional PLMs face challenges in AG, particularly in generating diverse and emotionally rich responses. The emergence of Large Language Models (LLMs), such as the ChatGPT series and LLaMA models, brings new opportunities and challenges, catalyzing a paradigm shift in AC. LLMs possess capabilities of in-context learning, common sense reasoning, and advanced sequence generation, which present unprecedented opportunities for AU. To provide a comprehensive overview of AC in the LLMs era from an NLP perspective, we summarize the development of LLMs research in this field, aiming to offer new insights. Specifically, we first summarize the traditional tasks related to AC and introduce the preliminary study based on LLMs. Subsequently, we outline the relevant techniques of popular LLMs to improve AC tasks, including Instruction Tuning and Prompt Engineering. For Instruction Tuning, we discuss full parameter fine-tuning and parameter-efficient methods such as LoRA, P-Tuning, and Prompt Tuning. In Prompt Engineering, we examine Zero-shot, Few-shot, Chain of Thought (CoT), and Agent-based methods for AU and AG. To clearly understand the performance of LLMs on different Affective Computing tasks, we further summarize the existing benchmarks and evaluation methods.
Abstract:Streaming data clustering is a popular research topic in the fields of data mining and machine learning. Compared to static data, streaming data, which is usually analyzed in data chunks, is more susceptible to encountering the dynamic cluster imbalanced issue. That is, the imbalanced degree of clusters varies in different streaming data chunks, leading to corruption in either the accuracy or the efficiency of streaming data analysis based on existing clustering methods. Therefore, we propose an efficient approach called Learning Self-Refined Organizing Map (LSROM) to handle the imbalanced streaming data clustering problem, where we propose an advanced SOM for representing the global data distribution. The constructed SOM is first refined for guiding the partition of the dataset to form many micro-clusters to avoid the missing small clusters in imbalanced data. Then an efficient merging of the micro-clusters is conducted through quick retrieval based on the SOM, which can automatically yield a true number of imbalanced clusters. In comparison to existing imbalanced data clustering approaches, LSROM is with a lower time complexity $O(n\log n)$, while achieving very competitive clustering accuracy. Moreover, LSROM is interpretable and insensitive to hyper-parameters. Extensive experiments have verified its efficacy.
Abstract:Full-parameter fine-tuning has become the go-to choice for adapting language models (LMs) to downstream tasks due to its excellent performance. As LMs grow in size, fine-tuning the full parameters of LMs requires a prohibitively large amount of GPU memory. Existing approaches utilize zeroth-order optimizer to conserve GPU memory, which can potentially compromise the performance of LMs as non-zero order optimizers tend to converge more readily on most downstream tasks. In this paper, we propose a novel optimizer-independent end-to-end hierarchical fine-tuning strategy, HiFT, which only updates a subset of parameters at each training step. HiFT can significantly reduce the amount of gradients and optimizer state parameters residing in GPU memory at the same time, thereby reducing GPU memory usage. Our results demonstrate that: (1) HiFT achieves comparable performance to parameter-efficient fine-tuning and standard full parameter fine-tuning. (2) HiFT supports various optimizers including AdamW, AdaGrad, SGD, etc. (3) HiFT can save more than 60\% GPU memory compared with standard full-parameter fine-tuning for 7B model. (4) HiFT enables full-parameter fine-tuning of a 7B model on single 48G A6000 with a precision of 32 using the AdamW optimizer, without using any memory saving techniques.
Abstract:Stickers, while widely recognized for enhancing empathetic communication in online interactions, remain underexplored in current empathetic dialogue research. In this paper, we introduce the Agent for StickerConv (Agent4SC), which uses collaborative agent interactions to realistically simulate human behavior with sticker usage, thereby enhancing multimodal empathetic communication. Building on this foundation, we develop a multimodal empathetic dialogue dataset, StickerConv, which includes 12.9K dialogue sessions, 5.8K unique stickers, and 2K diverse conversational scenarios, specifically designs to augment the generation of empathetic responses in a multimodal context. To leverage the richness of this dataset, we propose PErceive and Generate Stickers (PEGS), a multimodal empathetic response generation model, complemented by a comprehensive set of empathy evaluation metrics based on LLM. Our experiments demonstrate PEGS's effectiveness in generating contextually relevant and emotionally resonant multimodal empathetic responses, contributing to the advancement of more nuanced and engaging empathetic dialogue systems. Our project page is available at https://neu-datamining.github.io/StickerConv .
Abstract:We introduce a pipeline to address anatomical inaccuracies in Stable Diffusion generated hand images. The initial step involves constructing a specialized dataset, focusing on hand anomalies, to train our models effectively. A finetuned detection model is pivotal for precise identification of these anomalies, ensuring targeted correction. Body pose estimation aids in understanding hand orientation and positioning, crucial for accurate anomaly correction. The integration of ControlNet and InstructPix2Pix facilitates sophisticated inpainting and pixel-level transformation, respectively. This dual approach allows for high-fidelity image adjustments. This comprehensive approach ensures the generation of images with anatomically accurate hands, closely resembling real-world appearances. Our experimental results demonstrate the pipeline's efficacy in enhancing hand image realism in Stable Diffusion outputs. We provide an online demo at https://fixhand.yiqun.io
Abstract:K-Means clustering algorithm is one of the most commonly used clustering algorithms because of its simplicity and efficiency. K-Means clustering algorithm based on Euclidean distance only pays attention to the linear distance between samples, but ignores the overall distribution structure of the dataset (i.e. the fluid structure of dataset). Since it is difficult to describe the internal structure of two data points by Euclidean distance in high-dimensional data space, we propose a new distance measurement, namely, view-distance, and apply it to the K-Means algorithm. On the classical manifold learning datasets, S-curve and Swiss roll datasets, not only this new distance can cluster the data according to the structure of the data itself, but also the boundaries between categories are neat dividing lines. Moreover, we also tested the classification accuracy and clustering effect of the K-Means algorithm based on view-distance on some real-world datasets. The experimental results show that, on most datasets, the K-Means algorithm based on view-distance has a certain degree of improvement in classification accuracy and clustering effect.