Abstract:Object detectors, which are widely used in real-world applications, are vulnerable to backdoor attacks. This vulnerability arises because many users rely on datasets or pre-trained models provided by third parties due to constraints on data and resources. However, most research on backdoor attacks has focused on image classification, with limited investigation into object detection. Furthermore, the triggers for most existing backdoor attacks on object detection are manually generated, requiring prior knowledge and consistent patterns between the training and inference stages. This approach makes the attacks either easy to detect or difficult to adapt to various scenarios. To address these limitations, we propose novel twin trigger generative networks in the frequency domain to generate invisible triggers for implanting stealthy backdoors into models during training, and visible triggers for steady activation during inference, making the attack process difficult to trace. Specifically, for the invisible trigger generative network, we deploy a Gaussian smoothing layer and a high-frequency artifact classifier to enhance the stealthiness of backdoor implantation in object detectors. For the visible trigger generative network, we design a novel alignment loss to optimize the visible triggers so that they differ from the original patterns but still align with the malicious activation behavior of the invisible triggers. Extensive experimental results and analyses prove the possibility of using different triggers in the training stage and the inference stage, and demonstrate the attack effectiveness of our proposed visible trigger and invisible trigger generative networks, significantly reducing the mAP_0.5 of the object detectors by 70.0% and 84.5%, including YOLOv5 and YOLOv7 with different settings, respectively.
Abstract:Video understanding has made huge strides in recent years, relying largely on the power of the transformer architecture. As this architecture is notoriously expensive and video is highly redundant, research into improving efficiency has become particularly relevant. This has led to many creative solutions, including token merging and token selection. While most methods succeed in reducing the cost of the model and maintaining accuracy, an interesting pattern arises: most methods do not outperform the random sampling baseline. In this paper we take a closer look at this phenomenon and make several observations. First, we develop an oracle for the value of tokens which exposes a clear Pareto distribution where most tokens have remarkably low value, and just a few carry most of the perceptual information. Second, we analyze why this oracle is extremely hard to learn, as it does not consistently coincide with visual cues. Third, we observe that easy videos need fewer tokens to maintain accuracy. We build on these and further insights to propose a lightweight video model we call LITE that can select a small number of tokens effectively, outperforming state-of-the-art and existing baselines across datasets (Kinetics400 and Something-Something-V2) in the challenging trade-off of computation (GFLOPs) vs accuracy.
Abstract:Zero-shot action recognition requires a strong ability to generalize from pre-training and seen classes to novel unseen classes. Similarly, continual learning aims to develop models that can generalize effectively and learn new tasks without forgetting the ones previously learned. The generalization goals of zero-shot and continual learning are closely aligned, however techniques from continual learning have not been applied to zero-shot action recognition. In this paper, we propose a novel method based on continual learning to address zero-shot action recognition. This model, which we call {\em Generative Iterative Learning} (GIL) uses a memory of synthesized features of past classes, and combines these synthetic features with real ones from novel classes. The memory is used to train a classification model, ensuring a balanced exposure to both old and new classes. Experiments demonstrate that {\em GIL} improves generalization in unseen classes, achieving a new state-of-the-art in zero-shot recognition across multiple benchmarks. Importantly, {\em GIL} also boosts performance in the more challenging generalized zero-shot setting, where models need to retain knowledge about classes seen before fine-tuning.
Abstract:Utilizing large pre-trained models for specific tasks has yielded impressive results. However, fully fine-tuning these increasingly large models is becoming prohibitively resource-intensive. This has led to a focus on more parameter-efficient transfer learning, primarily within the same modality. But this approach has limitations, particularly in video understanding where suitable pre-trained models are less common. Addressing this, our study introduces a novel cross-modality transfer learning approach from images to videos, which we call parameter-efficient image-to-video transfer learning. We present the Facial-Emotion Adapter (FE-Adapter), designed for efficient fine-tuning in video tasks. This adapter allows pre-trained image models, which traditionally lack temporal processing capabilities, to analyze dynamic video content efficiently. Notably, it uses about 15 times fewer parameters than previous methods, while improving accuracy. Our experiments in video emotion recognition demonstrate that the FE-Adapter can match or even surpass existing fine-tuning and video emotion models in both performance and efficiency. This breakthrough highlights the potential for cross-modality approaches in enhancing the capabilities of AI models, particularly in fields like video emotion analysis where the demand for efficiency and accuracy is constantly rising.
Abstract:The Segment Anything Model (SAM) has achieved remarkable successes in the realm of natural image segmentation, but its deployment in the medical imaging sphere has encountered challenges. Specifically, the model struggles with medical images that feature low contrast, faint boundaries, intricate morphologies, and small-sized objects. To address these challenges and enhance SAM's performance in the medical domain, we introduce a comprehensive modification. Firstly, we incorporate a frozen Convolutional Neural Network (CNN) branch as an image encoder, which synergizes with SAM's original Vision Transformer (ViT) encoder through a novel variational attention fusion module. This integration bolsters the model's capability to capture local spatial information, which is often paramount in medical imagery. Moreover, to further optimize SAM for medical imaging, we introduce feature and position adapters within the ViT branch, refining the encoder's representations. We see that compared to current prompting strategies to fine-tune SAM for ultrasound medical segmentation, the use of text descriptions that serve as text prompts for SAM helps significantly improve the performance. Leveraging ChatGPT's natural language understanding capabilities, we generate prompts that offer contextual information and guidance to SAM, enabling it to better understand the nuances of ultrasound medical images and improve its segmentation accuracy. Our method, in its entirety, represents a significant stride towards making universal image segmentation models more adaptable and efficient in the medical domain.
Abstract:Contemporary medical contrastive learning faces challenges from inconsistent semantics and sample pair morphology, leading to dispersed and converging semantic shifts. The variability in text reports, due to multiple authors, complicates semantic consistency. To tackle these issues, we propose a two-step approach. Initially, text reports are converted into a standardized triplet format, laying the groundwork for our novel concept of ``observations'' and ``verdicts''. This approach refines the {Entity, Position, Exist} triplet into binary questions, guiding towards a clear ``verdict''. We also innovate in visual pre-training with a Meijering-based masking, focusing on features representative of medical images' local context. By integrating this with our text conversion method, our model advances cross-modal representation in a multimodal contrastive learning framework, setting new benchmarks in medical image analysis.
Abstract:This paper offers a comprehensive analysis of recent advancements in video inpainting techniques, a critical subset of computer vision and artificial intelligence. As a process that restores or fills in missing or corrupted portions of video sequences with plausible content, video inpainting has evolved significantly with the advent of deep learning methodologies. Despite the plethora of existing methods and their swift development, the landscape remains complex, posing challenges to both novices and established researchers. Our study deconstructs major techniques, their underpinning theories, and their effective applications. Moreover, we conduct an exhaustive comparative study, centering on two often-overlooked dimensions: visual quality and computational efficiency. We adopt a human-centric approach to assess visual quality, enlisting a panel of annotators to evaluate the output of different video inpainting techniques. This provides a nuanced qualitative understanding that complements traditional quantitative metrics. Concurrently, we delve into the computational aspects, comparing inference times and memory demands across a standardized hardware setup. This analysis underscores the balance between quality and efficiency: a critical consideration for practical applications where resources may be constrained. By integrating human validation and computational resource comparison, this survey not only clarifies the present landscape of video inpainting techniques but also charts a course for future explorations in this vibrant and evolving field.
Abstract:Despite recent advances in video action recognition achieving strong performance on existing benchmarks, these models often lack robustness when faced with natural distribution shifts between training and test data. We propose two novel evaluation methods to assess model resilience to such distribution disparity. One method uses two different datasets collected from different sources and uses one for training and validation, and the other for testing. More precisely, we created dataset splits of HMDB-51 or UCF-101 for training, and Kinetics-400 for testing, using the subset of the classes that are overlapping in both train and test datasets. The other proposed method extracts the feature mean of each class from the target evaluation dataset's training data (i.e. class prototype) and estimates test video prediction as a cosine similarity score between each sample to the class prototypes of each target class. This procedure does not alter model weights using the target dataset and it does not require aligning overlapping classes of two different datasets, thus is a very efficient method to test the model robustness to distribution shifts without prior knowledge of the target distribution. We address the robustness problem by adversarial augmentation training - generating augmented views of videos that are "hard" for the classification model by applying gradient ascent on the augmentation parameters - as well as "curriculum" scheduling the strength of the video augmentations. We experimentally demonstrate the superior performance of the proposed adversarial augmentation approach over baselines across three state-of-the-art action recognition models - TSM, Video Swin Transformer, and Uniformer. The presented work provides critical insight into model robustness to distribution shifts and presents effective techniques to enhance video action recognition performance in a real-world deployment.
Abstract:Deep learning models have revolutionized various fields, from image recognition to natural language processing, by achieving unprecedented levels of accuracy. However, their increasing energy consumption has raised concerns about their environmental impact, disadvantaging smaller entities in research and exacerbating global energy consumption. In this paper, we explore the trade-off between model accuracy and electricity consumption, proposing a metric that penalizes large consumption of electricity. We conduct a comprehensive study on the electricity consumption of various deep learning models across different GPUs, presenting a detailed analysis of their accuracy-efficiency trade-offs. By evaluating accuracy per unit of electricity consumed, we demonstrate how smaller, more energy-efficient models can significantly expedite research while mitigating environmental concerns. Our results highlight the potential for a more sustainable approach to deep learning, emphasizing the importance of optimizing models for efficiency. This research also contributes to a more equitable research landscape, where smaller entities can compete effectively with larger counterparts. This advocates for the adoption of efficient deep learning practices to reduce electricity consumption, safeguarding the environment for future generations whilst also helping ensure a fairer competitive landscape.
Abstract:Video understanding has long suffered from reliance on large labeled datasets, motivating research into zero-shot learning. Recent progress in language modeling presents opportunities to advance zero-shot video analysis, but constructing an effective semantic space relating action classes remains challenging. We address this by introducing a novel dataset, Stories, which contains rich textual descriptions for diverse action classes extracted from WikiHow articles. For each class, we extract multi-sentence narratives detailing the necessary steps, scenes, objects, and verbs that characterize the action. This contextual data enables modeling of nuanced relationships between actions, paving the way for zero-shot transfer. We also propose an approach that harnesses Stories to improve feature generation for training zero-shot classification. Without any target dataset fine-tuning, our method achieves new state-of-the-art on multiple benchmarks, improving top-1 accuracy by up to 6.1%. We believe Stories provides a valuable resource that can catalyze progress in zero-shot action recognition. The textual narratives forge connections between seen and unseen classes, overcoming the bottleneck of labeled data that has long impeded advancements in this exciting domain. The data can be found here: https://github.com/kini5gowda/Stories .