Abstract:Healthcare systems worldwide face persistent challenges in efficiency, accessibility, and personalization. Powered by modern AI technologies such as multimodal large language models and world models, Embodied AI (EmAI) represents a transformative frontier, offering enhanced autonomy and the ability to interact with the physical world to address these challenges. As an interdisciplinary and rapidly evolving research domain, "EmAI in healthcare" spans diverse fields such as algorithms, robotics, and biomedicine. This complexity underscores the importance of timely reviews and analyses to track advancements, address challenges, and foster cross-disciplinary collaboration. In this paper, we provide a comprehensive overview of the "brain" of EmAI for healthcare, wherein we introduce foundational AI algorithms for perception, actuation, planning, and memory, and focus on presenting the healthcare applications spanning clinical interventions, daily care & companionship, infrastructure support, and biomedical research. Despite its promise, the development of EmAI for healthcare is hindered by critical challenges such as safety concerns, gaps between simulation platforms and real-world applications, the absence of standardized benchmarks, and uneven progress across interdisciplinary domains. We discuss the technical barriers and explore ethical considerations, offering a forward-looking perspective on the future of EmAI in healthcare. A hierarchical framework of intelligent levels for EmAI systems is also introduced to guide further development. By providing systematic insights, this work aims to inspire innovation and practical applications, paving the way for a new era of intelligent, patient-centered healthcare.
Abstract:In the domain of multi-objective optimization, evolutionary algorithms are distinguished by their capability to generate a diverse population of solutions that navigate the trade-offs inherent among competing objectives. This has catalyzed the ascension of evolutionary multi-objective optimization (EMO) as a prevalent approach. Despite the effectiveness of the EMO paradigm, the analysis of resultant solution sets presents considerable challenges. This is primarily attributed to the high-dimensional nature of the data and the constraints imposed by static visualization methods, which frequently culminate in visual clutter and impede interactive exploratory analysis. To address these challenges, this paper introduces ParetoLens, a visual analytics framework specifically tailored to enhance the inspection and exploration of solution sets derived from the multi-objective evolutionary algorithms. Utilizing a modularized, algorithm-agnostic design, ParetoLens enables a detailed inspection of solution distributions in both decision and objective spaces through a suite of interactive visual representations. This approach not only mitigates the issues associated with static visualizations but also supports a more nuanced and flexible analysis process. The usability of the framework is evaluated through case studies and expert interviews, demonstrating its potential to uncover complex patterns and facilitate a deeper understanding of multi-objective optimization solution sets. A demo website of ParetoLens is available at https://dva-lab.org/paretolens/.
Abstract:Feature Generative Adversarial Networks have emerged as powerful generative models in producing high-quality representations of unseen classes within the scope of Zero-shot Learning (ZSL). This paper delves into the pivotal influence of unseen class priors within the framework of transductive ZSL (TZSL) and illuminates the finding that even a marginal prior bias can result in substantial accuracy declines. Our extensive analysis uncovers that this inefficacy fundamentally stems from the utilization of an unconditional unseen discriminator - a core component in existing TZSL. We further establish that the detrimental effects of this component are inevitable unless the generator perfectly fits class-specific distributions. Building on these insights, we introduce our Improved Feature Generation Framework, termed I-VAEGAN, which incorporates two novel components: Pseudo-conditional Feature Adversarial (PFA) learning and Variational Embedding Regression (VER). PFA circumvents the need for prior estimation by explicitly injecting the predicted semantics as pseudo conditions for unseen classes premised by precise semantic regression. Meanwhile, VER utilizes reconstructive pre-training to learn class statistics, obtaining better semantic regression. Our I-VAEGAN achieves state-of-the-art TZSL accuracy across various benchmarks and priors. Our code would be released upon acceptance.
Abstract:Multi-agent hierarchical reinforcement learning (MAHRL) has been studied as an effective means to solve intelligent decision problems in complex and large-scale environments. However, most current MAHRL algorithms follow the traditional way of using reward functions in reinforcement learning, which limits their use to a single task. This study aims to design a multi-agent cooperative algorithm with logic reward shaping (LRS), which uses a more flexible way of setting the rewards, allowing for the effective completion of multi-tasks. LRS uses Linear Temporal Logic (LTL) to express the internal logic relation of subtasks within a complex task. Then, it evaluates whether the subformulae of the LTL expressions are satisfied based on a designed reward structure. This helps agents to learn to effectively complete tasks by adhering to the LTL expressions, thus enhancing the interpretability and credibility of their decisions. To enhance coordination and cooperation among multiple agents, a value iteration technique is designed to evaluate the actions taken by each agent. Based on this evaluation, a reward function is shaped for coordination, which enables each agent to evaluate its status and complete the remaining subtasks through experiential learning. Experiments have been conducted on various types of tasks in the Minecraft-like environment. The results demonstrate that the proposed algorithm can improve the performance of multi-agents when learning to complete multi-tasks.
Abstract:Multi-objective optimization has burgeoned as a potent methodology for informed decision-making in enhanced geothermal systems, aiming to concurrently maximize economic yield, ensure enduring geothermal energy provision, and curtail carbon emissions. However, addressing a multitude of design parameters inherent in computationally intensive physics-driven simulations constitutes a formidable impediment for geothermal design optimization, as well as across a broad range of scientific and engineering domains. Here we report an Active Learning enhanced Evolutionary Multi-objective Optimization algorithm, integrated with hydrothermal simulations in fractured media, to enable efficient optimization of fractured geothermal systems using few model evaluations. We introduce probabilistic neural network as classifier to learns to predict the Pareto dominance relationship between candidate samples and reference samples, thereby facilitating the identification of promising but uncertain offspring solutions. We then use active learning strategy to conduct hypervolume based attention subspace search with surrogate model by iteratively infilling informative samples within local promising parameter subspace. We demonstrate its effectiveness by conducting extensive experimental tests of the integrated framework, including multi-objective benchmark functions, a fractured geothermal model and a large-scale enhanced geothermal system. Results demonstrate that the ALEMO approach achieves a remarkable reduction in required simulations, with a speed-up of 1-2 orders of magnitude (10-100 times faster) than traditional evolutionary methods, thereby enabling accelerated decision-making. Our method is poised to advance the state-of-the-art of renewable geothermal energy system and enable widespread application to accelerate the discovery of optimal designs for complex systems.
Abstract:Scientific innovation is pivotal for humanity, and harnessing large language models (LLMs) to generate research ideas could transform discovery. However, existing LLMs often produce simplistic and repetitive suggestions due to their limited ability in acquiring external knowledge for innovation. To address this problem, we introduce an enhanced planning and search methodology designed to boost the creative potential of LLM-based systems. Our approach involves an iterative process to purposely plan the retrieval of external knowledge, progressively enriching the idea generation with broader and deeper insights. Validation through automated and human assessments indicates that our framework substantially elevates the quality of generated ideas, particularly in novelty and diversity. The number of unique novel ideas produced by our framework is 3.4 times higher than without it. Moreover, our method outperforms the current state-of-the-art, generating at least 2.5 times more top-rated ideas based on 170 seed papers in a Swiss Tournament evaluation.
Abstract:Deploying models across diverse devices demands tradeoffs among multiple objectives due to different resource constraints. Arguably, due to the small model trap problem in multi-objective neural architecture search (MO-NAS) based on a supernet, existing approaches may fail to maintain large models. Moreover, multi-tasking neural architecture search (MT-NAS) excels in handling multiple tasks simultaneously, but most existing efforts focus on tasks from the same dataset, limiting their practicality in real-world scenarios where multiple tasks may come from distinct datasets. To tackle the above challenges, we propose a Multi-Objective Evolutionary Multi-Tasking framework for NAS (MO-EMT-NAS) to achieve architectural knowledge transfer across tasks from different datasets while finding Pareto optimal architectures for multi-objectives, model accuracy and computational efficiency. To alleviate the small model trap issue, we introduce an auxiliary objective that helps maintain multiple larger models of similar accuracy. Moreover, the computational efficiency is further enhanced by parallelizing the training and validation of the weight-sharing-based supernet. Experimental results on seven datasets with two, three, and four task combinations show that MO-EMT-NAS achieves a better minimum classification error while being able to offer flexible trade-offs between model performance and complexity, compared to the state-of-the-art single-objective MT-NAS algorithms. The runtime of MO-EMT-NAS is reduced by 59.7% to 77.7%, compared to the corresponding multi-objective single-task approaches.
Abstract:Adversarial training (AT) has become an effective defense method against adversarial examples (AEs) and it is typically framed as a bi-level optimization problem. Among various AT methods, fast AT (FAT), which employs a single-step attack strategy to guide the training process, can achieve good robustness against adversarial attacks at a low cost. However, FAT methods suffer from the catastrophic overfitting problem, especially on complex tasks or with large-parameter models. In this work, we propose a FAT method termed FGSM-PCO, which mitigates catastrophic overfitting by averting the collapse of the inner optimization problem in the bi-level optimization process. FGSM-PCO generates current-stage AEs from the historical AEs and incorporates them into the training process using an adaptive mechanism. This mechanism determines an appropriate fusion ratio according to the performance of the AEs on the training model. Coupled with a loss function tailored to the training framework, FGSM-PCO can alleviate catastrophic overfitting and help the recovery of an overfitted model to effective training. We evaluate our algorithm across three models and three datasets to validate its effectiveness. Comparative empirical studies against other FAT algorithms demonstrate that our proposed method effectively addresses unresolved overfitting issues in existing algorithms.
Abstract:Multi-Task Evolutionary Optimization (MTEO), an important field focusing on addressing complex problems through optimizing multiple tasks simultaneously, has attracted much attention. While MTEO has been primarily focusing on task similarity, there remains a hugely untapped potential in harnessing the shared characteristics between different domains to enhance evolutionary optimization. For example, real-world complex systems usually share the same characteristics, such as the power-law rule, small-world property, and community structure, thus making it possible to transfer solutions optimized in one system to another to facilitate the optimization. Drawing inspiration from this observation of shared characteristics within complex systems, we set out to extend MTEO to a novel framework - multi-domain evolutionary optimization (MDEO). To examine the performance of the proposed MDEO, we utilize a challenging combinatorial problem of great security concern - community deception in complex networks as the optimization task. To achieve MDEO, we propose a community-based measurement of graph similarity to manage the knowledge transfer among domains. Furthermore, we develop a graph representation-based network alignment model that serves as the conduit for effectively transferring solutions between different domains. Moreover, we devise a self-adaptive mechanism to determine the number of transferred solutions from different domains and introduce a novel mutation operator based on the learned mapping to facilitate the utilization of knowledge from other domains. Experiments on eight real-world networks of different domains demonstrate MDEO superiority in efficacy compared to classical evolutionary optimization. Simulations of attacks on the community validate the effectiveness of the proposed MDEO in safeguarding community security.
Abstract:Graph neural networks (GNNs) have emerged as a powerful tool for solving combinatorial optimization problems (COPs), exhibiting state-of-the-art performance in both graph-structured and non-graph-structured domains. However, existing approaches lack a unified framework capable of addressing a wide range of COPs. After presenting a summary of representative COPs and a brief review of recent advancements in GNNs for solving COPs, this paper proposes a unified framework for solving COPs based on GNNs, including graph representation of COPs, equivalent conversion of non-graph structured COPs to graph-structured COPs, graph decomposition, and graph simplification. The proposed framework leverages the ability of GNNs to effectively capture the relational information and extract features from the graph representation of COPs, offering a generic solution to COPs that can address the limitations of state-of-the-art in solving non-graph-structured and highly complex graph-structured COPs.