Abstract:Modeling crowds has many important applications in games and computer animation. Inspired by the emergent following effect in real-life crowd scenarios, in this work, we develop a method for implicitly grouping moving agents. We achieve this by analyzing local information around each agent and rotating its preferred velocity accordingly. Each agent could automatically form an implicit group with its neighboring agents that have similar directions. In contrast to an explicit group, there are no strict boundaries for an implicit group. If an agent's direction deviates from its group as a result of positional changes, it will autonomously exit the group or join another implicitly formed neighboring group. This implicit grouping is autonomously emergent among agents rather than deliberately controlled by the algorithm. The proposed method is compared with many crowd simulation models, and the experimental results indicate that our approach achieves the lowest congestion levels in some classic scenarios. In addition, we demonstrate that adjusting the preferred velocity of agents can actually reduce the dissimilarity between their actual velocity and the original preferred velocity. Our work is available online.
Abstract:Existing genetic programming (GP) methods are typically designed based on a certain representation, such as tree-based or linear representations. These representations show various pros and cons in different domains. However, due to the complicated relationships among representation and fitness landscapes of GP, it is hard to intuitively determine which GP representation is the most suitable for solving a certain problem. Evolving programs (or models) with multiple representations simultaneously can alternatively search on different fitness landscapes since representations are highly related to the search space that essentially defines the fitness landscape. Fully using the latent synergies among different GP individual representations might be helpful for GP to search for better solutions. However, existing GP literature rarely investigates the simultaneous effective use of evolving multiple representations. To fill this gap, this paper proposes a multi-representation GP algorithm based on tree-based and linear representations, which are two commonly used GP representations. In addition, we develop a new cross-representation crossover operator to harness the interplay between tree-based and linear representations. Empirical results show that navigating the learned knowledge between basic tree-based and linear representations successfully improves the effectiveness of GP with solely tree-based or linear representation in solving symbolic regression and dynamic job shop scheduling problems.
Abstract:In many practical applications, usually, similar optimisation problems or scenarios repeatedly appear. Learning from previous problem-solving experiences can help adjust algorithm components of meta-heuristics, e.g., adaptively selecting promising search operators, to achieve better optimisation performance. However, those experiences obtained from previously solved problems, namely offline experiences, may sometimes provide misleading perceptions when solving a new problem, if the characteristics of previous problems and the new one are relatively different. Learning from online experiences obtained during the ongoing problem-solving process is more instructive but highly restricted by limited computational resources. This paper focuses on the effective combination of offline and online experiences. A novel hybrid framework that learns to dynamically and adaptively select promising search operators is proposed. Two adaptive operator selection modules with complementary paradigms cooperate in the framework to learn from offline and online experiences and make decisions. An adaptive decision policy is maintained to balance the use of those two modules in an online manner. Extensive experiments on 170 widely studied real-value benchmark optimisation problems and a benchmark set with 34 instances for combinatorial optimisation show that the proposed hybrid framework outperforms the state-of-the-art methods. Ablation study verifies the effectiveness of each component of the framework.
Abstract:The control of traffic signals is crucial for improving transportation efficiency. Recently, learning-based methods, especially Deep Reinforcement Learning (DRL), garnered substantial success in the quest for more efficient traffic signal control strategies. However, the design of rewards in DRL highly demands domain knowledge to converge to an effective policy, and the final policy also presents difficulties in terms of explainability. In this work, a new learning-based method for signal control in complex intersections is proposed. In our approach, we design a concept of phase urgency for each signal phase. During signal transitions, the traffic light control strategy selects the next phase to be activated based on the phase urgency. We then proposed to represent the urgency function as an explainable tree structure. The urgency function can calculate the phase urgency for a specific phase based on the current road conditions. Genetic programming is adopted to perform gradient-free optimization of the urgency function. We test our algorithm on multiple public traffic signal control datasets. The experimental results indicate that the tree-shaped urgency function evolved by genetic programming outperforms the baselines, including a state-of-the-art method in the transportation field and a well-known DRL-based method.
Abstract:The Critical Node Problem (CNP) is concerned with identifying the critical nodes in a complex network. These nodes play a significant role in maintaining the connectivity of the network, and removing them can negatively impact network performance. CNP has been studied extensively due to its numerous real-world applications. Among the different versions of CNP, CNP-1a has gained the most popularity. The primary objective of CNP-1a is to minimize the pair-wise connectivity in the remaining network after deleting a limited number of nodes from a network. Due to the NP-hard nature of CNP-1a, many heuristic/metaheuristic algorithms have been proposed to solve this problem. However, most existing algorithms start with a random initialization, leading to a high cost of obtaining an optimal solution. To improve the efficiency of solving CNP-1a, a knowledge-guided genetic algorithm named K2GA has been proposed. Unlike the standard genetic algorithm framework, K2GA has two main components: a pretrained neural network to obtain prior knowledge on possible critical nodes, and a hybrid genetic algorithm with local search for finding an optimal set of critical nodes based on the knowledge given by the trained neural network. The local search process utilizes a cut node-based greedy strategy. The effectiveness of the proposed knowledgeguided genetic algorithm is verified by experiments on 26 realworld instances of complex networks. Experimental results show that K2GA outperforms the state-of-the-art algorithms regarding the best, median, and average objective values, and improves the best upper bounds on the best objective values for eight realworld instances.
Abstract:Neural solvers based on attention mechanism have demonstrated remarkable effectiveness in solving vehicle routing problems. However, in the generalization process from small scale to large scale, we find a phenomenon of the dispersion of attention scores in existing neural solvers, which leads to poor performance. To address this issue, this paper proposes a distance-aware attention reshaping method, assisting neural solvers in solving large-scale vehicle routing problems. Specifically, without the need for additional training, we utilize the Euclidean distance information between current nodes to adjust attention scores. This enables a neural solver trained on small-scale instances to make rational choices when solving a large-scale problem. Experimental results show that the proposed method significantly outperforms existing state-of-the-art neural solvers on the large-scale CVRPLib dataset.
Abstract:Convolutional Neural Networks (CNNs) continue to achieve great success in classification tasks as innovative techniques and complex multi-path architecture topologies are introduced. Neural Architecture Search (NAS) aims to automate the design of these complex architectures, reducing the need for costly manual design work by human experts. Cellular Encoding (CE) is an evolutionary computation technique which excels in constructing novel multi-path topologies of varying complexity and has recently been applied with NAS to evolve CNN architectures for various classification tasks. However, existing CE approaches have severe limitations. They are restricted to only one domain, only partially implement the theme of CE, or only focus on the micro-architecture search space. This paper introduces a new CE representation and algorithm capable of evolving novel multi-path CNN architectures of varying depth, width, and complexity for image and text classification tasks. The algorithm explicitly focuses on the macro-architecture search space. Furthermore, by using a surrogate model approach, we show that the algorithm can evolve a performant CNN architecture in less than one GPU day, thereby allowing a sufficient number of experiment runs to be conducted to achieve scientific robustness. Experiment results show that the approach is highly competitive, defeating several state-of-the-art methods, and is generalisable to both the image and text domains.
Abstract:For solving combinatorial optimisation problems with metaheuristics, different search operators are applied for sampling new solutions in the neighbourhood of a given solution. It is important to understand the relationship between operators for various purposes, e.g., adaptively deciding when to use which operator to find optimal solutions efficiently. However, it is difficult to theoretically analyse this relationship, especially in the complex solution space of combinatorial optimisation problems. In this paper, we propose to empirically analyse the relationship between operators in terms of the correlation between their local optima and develop a measure for quantifying their relationship. The comprehensive analyses on a wide range of capacitated vehicle routing problem benchmark instances show that there is a consistent pattern in the correlation between commonly used operators. Based on this newly proposed local optima correlation metric, we propose a novel approach for adaptively selecting among the operators during the search process. The core intention is to improve search efficiency by preventing wasting computational resources on exploring neighbourhoods where the local optima have already been reached. Experiments on randomly generated instances and commonly used benchmark datasets are conducted. Results show that the proposed approach outperforms commonly used adaptive operator selection methods.
Abstract:An emerging optimisation problem from the real-world applications, named the multi-point dynamic aggregation (MPDA) problem, has become one of the active research topics of the multi-robot system. This paper focuses on a multi-objective MPDA problem which is to design an execution plan of the robots to minimise the number of robots and the maximal completion time of all the tasks. The strongly-coupled relationships among robots and tasks, the redundancy of the MPDA encoding, and the variable-size decision space of the MO-MPDA problem posed extra challenges for addressing the problem effectively. To address the above issues, we develop a hybrid decomposition-based multi-objective evolutionary algorithm (HDMOEA) using $ \varepsilon $-constraint method. It selects the maximal completion time of all tasks as the main objective, and converted the other objective into constraints. HDMOEA decomposes a MO-MPDA problem into a series of scalar constrained optimization subproblems by assigning each subproblem with an upper bound robot number. All the subproblems are optimized simultaneously with the transferring knowledge from other subproblems. Besides, we develop a hybrid population initialisation mechanism to enhance the quality of initial solutions, and a reproduction mechanism to transmit effective information and tackle the encoding redundancy. Experimental results show that the proposed HDMOEA method significantly outperforms the state-of-the-art methods in terms of several most-used metrics.
Abstract:The capacitated arc routing problem is a very important problem with many practical applications. This paper focuses on the large scale capacitated arc routing problem. Traditional solution optimization approaches usually fail because of their poor scalability. The divide-and-conquer strategy has achieved great success in solving large scale optimization problems by decomposing the original large problem into smaller sub-problems and solving them separately. For arc routing, a commonly used divide-and-conquer strategy is to divide the tasks into subsets, and then solve the sub-problems induced by the task subsets separately. However, the success of a divide-and-conquer strategy relies on a proper task division, which is non-trivial due to the complex interactions between the tasks. This paper proposes a novel problem decomposition operator, named the route cutting off operator, which considers the interactions between the tasks in a sophisticated way. To examine the effectiveness of the route cutting off operator, we integrate it with two state-of-the-art divide-and-conquer algorithms, and compared with the original counterparts on a wide range of benchmark instances. The results show that the route cutting off operator can improve the effectiveness of the decomposition, and lead to significantly better results especially when the problem size is very large and the time budget is very tight.