Abstract:Adversarial training (AT) has become an effective defense method against adversarial examples (AEs) and it is typically framed as a bi-level optimization problem. Among various AT methods, fast AT (FAT), which employs a single-step attack strategy to guide the training process, can achieve good robustness against adversarial attacks at a low cost. However, FAT methods suffer from the catastrophic overfitting problem, especially on complex tasks or with large-parameter models. In this work, we propose a FAT method termed FGSM-PCO, which mitigates catastrophic overfitting by averting the collapse of the inner optimization problem in the bi-level optimization process. FGSM-PCO generates current-stage AEs from the historical AEs and incorporates them into the training process using an adaptive mechanism. This mechanism determines an appropriate fusion ratio according to the performance of the AEs on the training model. Coupled with a loss function tailored to the training framework, FGSM-PCO can alleviate catastrophic overfitting and help the recovery of an overfitted model to effective training. We evaluate our algorithm across three models and three datasets to validate its effectiveness. Comparative empirical studies against other FAT algorithms demonstrate that our proposed method effectively addresses unresolved overfitting issues in existing algorithms.
Abstract:The field of evolutionary many-task optimization (EMaTO) is increasingly recognized for its ability to streamline the resolution of optimization challenges with repetitive characteristics, thereby conserving computational resources. This paper tackles the challenge of crafting efficient knowledge transfer mechanisms within EMaTO, a task complicated by the computational demands of individual task evaluations. We introduce a novel framework that employs a complex network to comprehensively analyze the dynamics of knowledge transfer between tasks within EMaTO. By extracting and scrutinizing the knowledge transfer network from existing EMaTO algorithms, we evaluate the influence of network modifications on overall algorithmic efficacy. Our findings indicate that these networks are diverse, displaying community-structured directed graph characteristics, with their network density adapting to different task sets. This research underscores the viability of integrating complex network concepts into EMaTO to refine knowledge transfer processes, paving the way for future advancements in the domain.
Abstract:This paper presents an interactive platform to interpret multi-objective evolutionary algorithms. Sokoban level generation is selected as a showcase for its widespread use in procedural content generation. By balancing the emptiness and spatial diversity of Sokoban levels, we illustrate the improved two-archive algorithm, Two_Arch2, a well-known multi-objective evolutionary algorithm. Our web-based platform integrates Two_Arch2 into an interface that visually and interactively demonstrates the evolutionary process in real-time. Designed to bridge theoretical optimisation strategies with practical game generation applications, the interface is also accessible to both researchers and beginners to multi-objective evolutionary algorithms or procedural content generation on a website. Through dynamic visualisations and interactive gameplay demonstrations, this web-based platform also has potential as an educational tool.
Abstract:Pretrained Optimization Models (POMs) leverage knowledge gained from optimizing various tasks, providing efficient solutions for new optimization challenges through direct usage or fine-tuning. Despite the inefficiencies and limited generalization abilities observed in current POMs, our proposed model, the general pre-trained optimization model (GPOM), addresses these shortcomings. GPOM constructs a population-based pretrained Black-Box Optimization (BBO) model tailored for continuous optimization. Evaluation on the BBOB benchmark and two robot control tasks demonstrates that GPOM outperforms other pretrained BBO models significantly, especially for high-dimensional tasks. Its direct optimization performance exceeds that of state-of-the-art evolutionary algorithms and POMs. Furthermore, GPOM exhibits robust generalization capabilities across diverse task distributions, dimensions, population sizes, and optimization horizons.
Abstract:With more and more deep neural networks being deployed as various daily services, their reliability is essential. It's frightening that deep neural networks are vulnerable and sensitive to adversarial attacks, the most common one of which for the services is evasion-based. Recent works usually strengthen the robustness by adversarial training or leveraging the knowledge of an amount of clean data. However, in practical terms, retraining and redeploying the model need a large computational budget, leading to heavy losses to the online service. In addition, when adversarial examples of a certain attack are detected, only limited adversarial examples are available for the service provider, while much clean data may not be accessible. Given the mentioned problems, we propose a new scenario, RaPiD (Rapid Plug-in Defender), which is to rapidly defend against a certain attack for the frozen original service model with limitations of few clean and adversarial examples. Motivated by the generalization and the universal computation ability of pre-trained transformer models, we come up with a new defender method, CeTaD, which stands for Considering Pre-trained Transformers as Defenders. In particular, we evaluate the effectiveness and the transferability of CeTaD in the case of one-shot adversarial examples and explore the impact of different parts of CeTaD as well as training data conditions. CeTaD is flexible, able to be embedded into an arbitrary differentiable model, and suitable for various types of attacks.
Abstract:Learning to optimize (L2O) has emerged as a powerful framework for black-box optimization (BBO). L2O learns the optimization strategies from the target task automatically without human intervention. This paper focuses on obtaining better performance when handling high-dimensional and expensive BBO with little function evaluation cost, which is the core challenge of black-box optimization. However, current L2O-based methods are weak for this due to a large number of evaluations on expensive black-box functions during training and poor representation of optimization strategy. To achieve this, 1) we utilize the cheap surrogate functions of the target task to guide the design of the optimization strategies; 2) drawing on the mechanism of evolutionary algorithm (EA), we propose a novel framework called B2Opt, which has a stronger representation of optimization strategies. Compared to the BBO baselines, B2Opt can achieve 3 to $10^6$ times performance improvement with less function evaluation cost. We test our proposal in high-dimensional synthetic functions and two real-world applications. We also find that deep B2Opt performs better than shallow ones.
Abstract:Network structure evolves with time in the real world, and the discovery of changing communities in dynamic networks is an important research topic that poses challenging tasks. Most existing methods assume that no significant change in the network occurs; namely, the difference between adjacent snapshots is slight. However, great change exists in the real world usually. The great change in the network will result in the community detection algorithms are difficulty obtaining valuable information from the previous snapshot, leading to negative transfer for the next time steps. This paper focuses on dynamic community detection with substantial changes by integrating higher-order knowledge from the previous snapshots to aid the subsequent snapshots. Moreover, to improve search efficiency, a higher-order knowledge transfer strategy is designed to determine first-order and higher-order knowledge by detecting the similarity of the adjacency matrix of snapshots. In this way, our proposal can better keep the advantages of previous community detection results and transfer them to the next task. We conduct the experiments on four real-world networks, including the networks with great or minor changes. Experimental results in the low-similarity datasets demonstrate that higher-order knowledge is more valuable than first-order knowledge when the network changes significantly and keeps the advantage even if handling the high-similarity datasets. Our proposal can also guide other dynamic optimization problems with great changes.