Sid
Abstract:In real-world applications, spectral Graph Neural Networks (GNNs) are powerful tools for processing diverse types of graphs. However, a single GNN often struggles to handle different graph types-such as homogeneous and heterogeneous graphs-simultaneously. This challenge has led to the manual design of GNNs tailored to specific graph types, but these approaches are limited by the high cost of labor and the constraints of expert knowledge, which cannot keep up with the rapid growth of graph data. To overcome these challenges, we propose AutoSGNN, an automated framework for discovering propagation mechanisms in spectral GNNs. AutoSGNN unifies the search space for spectral GNNs by integrating large language models with evolutionary strategies to automatically generate architectures that adapt to various graph types. Extensive experiments on nine widely-used datasets, encompassing both homophilic and heterophilic graphs, demonstrate that AutoSGNN outperforms state-of-the-art spectral GNNs and graph neural architecture search methods in both performance and efficiency.
Abstract:Image Restoration aims to restore degraded images, with deep learning, especially CNNs and Transformers, enhancing performance. However, there's a lack of a unified training benchmark for IR. We identified a bias in image complexity between training and testing datasets, affecting restoration quality. To address this, we created ReSyn, a large-scale IR dataset with balanced complexity, including real and synthetic images. We also established a unified training standard for IR models. Our RWKV-IR model integrates linear complexity RWKV into transformers for global and local receptive fields. It replaces Q-Shift with Depth-wise Convolution for local dependencies and combines Bi-directional attention for global-local awareness. The Cross-Bi-WKV module balances horizontal and vertical attention. Experiments show RWKV-IR's effectiveness in image restoration.
Abstract:Precise breast cancer classification on histopathological images has the potential to greatly improve the diagnosis and patient outcome in oncology. The data imbalance problem largely stems from the inherent imbalance within medical image datasets, where certain tumor subtypes may appear much less frequently. This constitutes a considerable limitation in biased model predictions that can overlook critical but rare classes. In this work, we adopted EfficientNet, a state-of-the-art convolutional neural network (CNN) model that balances high accuracy with computational cost efficiency. To address data imbalance, we introduce an intensive data augmentation pipeline and cost-sensitive learning, improving representation and ensuring that the model does not overly favor majority classes. This approach provides the ability to learn effectively from rare tumor types, improving its robustness. Additionally, we fine-tuned the model using transfer learning, where weights in the beginning trained on a binary classification task were adopted to multi-class classification, improving the capability to detect complex patterns within the BreakHis dataset. Our results underscore significant improvements in the binary classification performance, achieving an exceptional recall increase for benign cases from 0.92 to 0.95, alongside an accuracy enhancement from 97.35 % to 98.23%. Our approach improved the performance of multi-class tasks from 91.27% with regular augmentation to 94.54% with intensive augmentation, reaching 95.04% with transfer learning. This framework demonstrated substantial gains in precision in the minority classes, such as Mucinous carcinoma and Papillary carcinoma, while maintaining high recall consistently across these critical subtypes, as further confirmed by confusion matrix analysis.
Abstract:Modern autonomous vehicle perception systems often struggle with occlusions and limited perception range. Previous studies have demonstrated the effectiveness of cooperative perception in extending the perception range and overcoming occlusions, thereby improving the safety of autonomous driving. In recent years, a series of cooperative perception datasets have emerged. However, these datasets only focus on camera and LiDAR, overlooking 4D Radar, a sensor employed in single-vehicle autonomous driving for robust perception in adverse weather conditions. In this paper, to bridge the gap of missing 4D Radar datasets in cooperative perception, we present V2X-Radar, the first large real-world multi-modal dataset featuring 4D Radar. Our V2X-Radar dataset is collected using a connected vehicle platform and an intelligent roadside unit equipped with 4D Radar, LiDAR, and multi-view cameras. The collected data includes sunny and rainy weather conditions, spanning daytime, dusk, and nighttime, as well as typical challenging scenarios. The dataset comprises 20K LiDAR frames, 40K camera images, and 20K 4D Radar data, with 350K annotated bounding boxes across five categories. To facilitate diverse research domains, we establish V2X-Radar-C for cooperative perception, V2X-Radar-I for roadside perception, and V2X-Radar-V for single-vehicle perception. We further provide comprehensive benchmarks of recent perception algorithms on the above three sub-datasets. The dataset and benchmark codebase will be available at \url{http://openmpd.com/column/V2X-Radar}.
Abstract:Machine unlearning (MU) is becoming a promising paradigm to achieve the "right to be forgotten", where the training trace of any chosen data points could be eliminated, while maintaining the model utility on general testing samples after unlearning. With the advancement of forgetting research, many fundamental open questions remain unanswered: do different samples exhibit varying levels of difficulty in being forgotten? Further, does the sequence in which samples are forgotten, determined by their respective difficulty levels, influence the performance of forgetting algorithms? In this paper, we identify key factor affecting unlearning difficulty and the performance of unlearning algorithms. We find that samples with higher privacy risks are more likely to be unlearning, indicating that the unlearning difficulty varies among different samples which motives a more precise unlearning mode. Built upon this insight, we propose a general unlearning framework, dubbed RSU, which consists of Ranking module and SeqUnlearn module.
Abstract:Object detectors have shown outstanding performance on various public datasets. However, annotating a new dataset for a new task is usually unavoidable in real, since 1) a single existing dataset usually does not contain all object categories needed; 2) using multiple datasets usually suffers from annotation incompletion and heterogeneous features. We propose a novel problem as "Annotation-incomplete Multi-dataset Detection", and develop an end-to-end multi-task learning architecture which can accurately detect all the object categories with multiple partially annotated datasets. Specifically, we propose an attention feature extractor which helps to mine the relations among different datasets. Besides, a knowledge amalgamation training strategy is incorporated to accommodate heterogeneous features from different sources. Extensive experiments on different object detection datasets demonstrate the effectiveness of our methods and an improvement of 2.17%, 2.10% in mAP can be achieved on COCO and VOC respectively.
Abstract:Wireless communications are significantly impacted by the propagation environment, particularly in doubly selective channels with variations in both time and frequency domains. Orthogonal Time Frequency Space (OTFS) modulation has emerged as a promising solution; however, its high equalization complexity, if performed in the delay-Doppler domain, limits its universal application. This article explores domain-adaptive system design, dynamically selecting best-fit domains for modulation, pilot placement, and equalization based on channel conditions, to enhance performance across diverse environments. We examine domain classifications and connections, signal designs, and equalization techniques with domain adaptivity, and finally highlight future research opportunities.
Abstract:Modern artificial intelligence (AI) systems are powered by foundation models. This paper presents a new set of foundation models, called Llama 3. It is a herd of language models that natively support multilinguality, coding, reasoning, and tool usage. Our largest model is a dense Transformer with 405B parameters and a context window of up to 128K tokens. This paper presents an extensive empirical evaluation of Llama 3. We find that Llama 3 delivers comparable quality to leading language models such as GPT-4 on a plethora of tasks. We publicly release Llama 3, including pre-trained and post-trained versions of the 405B parameter language model and our Llama Guard 3 model for input and output safety. The paper also presents the results of experiments in which we integrate image, video, and speech capabilities into Llama 3 via a compositional approach. We observe this approach performs competitively with the state-of-the-art on image, video, and speech recognition tasks. The resulting models are not yet being broadly released as they are still under development.
Abstract:The field of evolutionary many-task optimization (EMaTO) is increasingly recognized for its ability to streamline the resolution of optimization challenges with repetitive characteristics, thereby conserving computational resources. This paper tackles the challenge of crafting efficient knowledge transfer mechanisms within EMaTO, a task complicated by the computational demands of individual task evaluations. We introduce a novel framework that employs a complex network to comprehensively analyze the dynamics of knowledge transfer between tasks within EMaTO. By extracting and scrutinizing the knowledge transfer network from existing EMaTO algorithms, we evaluate the influence of network modifications on overall algorithmic efficacy. Our findings indicate that these networks are diverse, displaying community-structured directed graph characteristics, with their network density adapting to different task sets. This research underscores the viability of integrating complex network concepts into EMaTO to refine knowledge transfer processes, paving the way for future advancements in the domain.
Abstract:Text-to-image based object customization, aiming to generate images with the same identity (ID) as objects of interest in accordance with text prompts and reference images, has made significant progress. However, recent customizing research is dominated by specialized tasks, such as human customization or virtual try-on, leaving a gap in general object customization. To this end, we introduce AnyMaker, an innovative zero-shot object customization framework capable of generating general objects with high ID fidelity and flexible text editability. The efficacy of AnyMaker stems from its novel general ID extraction, dual-level ID injection, and ID-aware decoupling. Specifically, the general ID extraction module extracts sufficient ID information with an ensemble of self-supervised models to tackle the diverse customization tasks for general objects. Then, to provide the diffusion UNet with the extracted ID as much while not damaging the text editability in the generation process, we design a global-local dual-level ID injection module, in which the global-level semantic ID is injected into text descriptions while the local-level ID details are injected directly into the model through newly added cross-attention modules. In addition, we propose an ID-aware decoupling module to disentangle ID-related information from non-ID elements in the extracted representations for high-fidelity generation of both identity and text descriptions. To validate our approach and boost the research of general object customization, we create the first large-scale general ID dataset, Multi-Category ID-Consistent (MC-IDC) dataset, with 315k text-image samples and 10k categories. Experiments show that AnyMaker presents remarkable performance in general object customization and outperforms specialized methods in corresponding tasks. Code and dataset will be released soon.