Abstract:Blind face restoration endeavors to restore a clear face image from a degraded counterpart. Recent approaches employing Generative Adversarial Networks (GANs) as priors have demonstrated remarkable success in this field. However, these methods encounter challenges in achieving a balance between realism and fidelity, particularly in complex degradation scenarios. To inherit the exceptional realism generative ability of the diffusion model and also constrained by the identity-aware fidelity, we propose a novel diffusion-based framework by embedding the 3D facial priors as structure and identity constraints into a denoising diffusion process. Specifically, in order to obtain more accurate 3D prior representations, the 3D facial image is reconstructed by a 3D Morphable Model (3DMM) using an initial restored face image that has been processed by a pretrained restoration network. A customized multi-level feature extraction method is employed to exploit both structural and identity information of 3D facial images, which are then mapped into the noise estimation process. In order to enhance the fusion of identity information into the noise estimation, we propose a Time-Aware Fusion Block (TAFB). This module offers a more efficient and adaptive fusion of weights for denoising, considering the dynamic nature of the denoising process in the diffusion model, which involves initial structure refinement followed by texture detail enhancement.Extensive experiments demonstrate that our network performs favorably against state-of-the-art algorithms on synthetic and real-world datasets for blind face restoration.
Abstract:Although diffusion-based image virtual try-on has made considerable progress, emerging approaches still struggle to effectively address the issue of hand occlusion (i.e., clothing regions occluded by the hand part), leading to a notable degradation of the try-on performance. To tackle this issue widely existing in real-world scenarios, we propose VTON-HandFit, leveraging the power of hand priors to reconstruct the appearance and structure for hand occlusion cases. Firstly, we tailor a Handpose Aggregation Net using the ControlNet-based structure explicitly and adaptively encoding the global hand and pose priors. Besides, to fully exploit the hand-related structure and appearance information, we propose Hand-feature Disentanglement Embedding module to disentangle the hand priors into the hand structure-parametric and visual-appearance features, and customize a masked cross attention for further decoupled feature embedding. Lastly, we customize a hand-canny constraint loss to better learn the structure edge knowledge from the hand template of model image. VTON-HandFit outperforms the baselines in qualitative and quantitative evaluations on the public dataset and our self-collected hand-occlusion Handfit-3K dataset particularly for the arbitrary hand pose occlusion cases in real-world scenarios. The Code and dataset will be available at \url{https://github.com/VTON-HandFit/VTON-HandFit}.
Abstract:Person-generic audio-driven face generation is a challenging task in computer vision. Previous methods have achieved remarkable progress in audio-visual synchronization, but there is still a significant gap between current results and practical applications. The challenges are two-fold: 1) Preserving unique individual traits for achieving high-precision lip synchronization. 2) Generating high-quality facial renderings in real-time performance. In this paper, we propose a novel generalized audio-driven framework RealTalk, which consists of an audio-to-expression transformer and a high-fidelity expression-to-face renderer. In the first component, we consider both identity and intra-personal variation features related to speaking lip movements. By incorporating cross-modal attention on the enriched facial priors, we can effectively align lip movements with audio, thus attaining greater precision in expression prediction. In the second component, we design a lightweight facial identity alignment (FIA) module which includes a lip-shape control structure and a face texture reference structure. This novel design allows us to generate fine details in real-time, without depending on sophisticated and inefficient feature alignment modules. Our experimental results, both quantitative and qualitative, on public datasets demonstrate the clear advantages of our method in terms of lip-speech synchronization and generation quality. Furthermore, our method is efficient and requires fewer computational resources, making it well-suited to meet the needs of practical applications.
Abstract:Text-to-image based object customization, aiming to generate images with the same identity (ID) as objects of interest in accordance with text prompts and reference images, has made significant progress. However, recent customizing research is dominated by specialized tasks, such as human customization or virtual try-on, leaving a gap in general object customization. To this end, we introduce AnyMaker, an innovative zero-shot object customization framework capable of generating general objects with high ID fidelity and flexible text editability. The efficacy of AnyMaker stems from its novel general ID extraction, dual-level ID injection, and ID-aware decoupling. Specifically, the general ID extraction module extracts sufficient ID information with an ensemble of self-supervised models to tackle the diverse customization tasks for general objects. Then, to provide the diffusion UNet with the extracted ID as much while not damaging the text editability in the generation process, we design a global-local dual-level ID injection module, in which the global-level semantic ID is injected into text descriptions while the local-level ID details are injected directly into the model through newly added cross-attention modules. In addition, we propose an ID-aware decoupling module to disentangle ID-related information from non-ID elements in the extracted representations for high-fidelity generation of both identity and text descriptions. To validate our approach and boost the research of general object customization, we create the first large-scale general ID dataset, Multi-Category ID-Consistent (MC-IDC) dataset, with 315k text-image samples and 10k categories. Experiments show that AnyMaker presents remarkable performance in general object customization and outperforms specialized methods in corresponding tasks. Code and dataset will be released soon.
Abstract:Open-vocabulary 3D scene understanding presents a significant challenge in the field. Recent advancements have sought to transfer knowledge embedded in vision language models from the 2D domain to 3D domain. However, these approaches often require learning prior knowledge from specific 3D scene datasets, which limits their applicability in open-world scenarios. The Segment Anything Model (SAM) has demonstrated remarkable zero-shot segmentation capabilities, prompting us to investigate its potential for comprehending 3D scenes without the need for training. In this paper, we introduce OV-SAM3D, a universal framework for open-vocabulary 3D scene understanding. This framework is designed to perform understanding tasks for any 3D scene without requiring prior knowledge of the scene. Specifically, our method is composed of two key sub-modules: First, we initiate the process by generating superpoints as the initial 3D prompts and refine these prompts using segment masks derived from SAM. Moreover, we then integrate a specially designed overlapping score table with open tags from the Recognize Anything Model (RAM) to produce final 3D instances with open-world label. Empirical evaluations conducted on the ScanNet200 and nuScenes datasets demonstrate that our approach surpasses existing open-vocabulary methods in unknown open-world environments.
Abstract:In the field of multi-class anomaly detection, reconstruction-based methods derived from single-class anomaly detection face the well-known challenge of ``learning shortcuts'', wherein the model fails to learn the patterns of normal samples as it should, opting instead for shortcuts such as identity mapping or artificial noise elimination. Consequently, the model becomes unable to reconstruct genuine anomalies as normal instances, resulting in a failure of anomaly detection. To counter this issue, we present a novel unified feature reconstruction-based anomaly detection framework termed RLR (Reconstruct features from a Learnable Reference representation). Unlike previous methods, RLR utilizes learnable reference representations to compel the model to learn normal feature patterns explicitly, thereby prevents the model from succumbing to the ``learning shortcuts'' issue. Additionally, RLR incorporates locality constraints into the learnable reference to facilitate more effective normal pattern capture and utilizes a masked learnable key attention mechanism to enhance robustness. Evaluation of RLR on the 15-category MVTec-AD dataset and the 12-category VisA dataset shows superior performance compared to state-of-the-art methods under the unified setting. The code of RLR will be publicly available.
Abstract:The integration of Multimodal Large Language Models (MLLMs) with robotic systems has significantly enhanced the ability of robots to interpret and act upon natural language instructions. Despite these advancements, conventional MLLMs are typically trained on generic image-text pairs, lacking essential robotics knowledge such as affordances and physical knowledge, which hampers their efficacy in manipulation tasks. To bridge this gap, we introduce ManipVQA, a novel framework designed to endow MLLMs with Manipulation-centric knowledge through a Visual Question-Answering format. This approach not only encompasses tool detection and affordance recognition but also extends to a comprehensive understanding of physical concepts. Our approach starts with collecting a varied set of images displaying interactive objects, which presents a broad range of challenges in tool object detection, affordance, and physical concept predictions. To seamlessly integrate this robotic-specific knowledge with the inherent vision-reasoning capabilities of MLLMs, we adopt a unified VQA format and devise a fine-tuning strategy that preserves the original vision-reasoning abilities while incorporating the new robotic insights. Empirical evaluations conducted in robotic simulators and across various vision task benchmarks demonstrate the robust performance of ManipVQA. Code and dataset will be made publicly available at https://github.com/SiyuanHuang95/ManipVQA.
Abstract:Recent success of vision foundation models have shown promising performance for the 2D perception tasks. However, it is difficult to train a 3D foundation network directly due to the limited dataset and it remains under explored whether existing foundation models can be lifted to 3D space seamlessly. In this paper, we present PointSeg, a novel training-free paradigm that leverages off-the-shelf vision foundation models to address 3D scene perception tasks. PointSeg can segment anything in 3D scene by acquiring accurate 3D prompts to align their corresponding pixels across frames. Concretely, we design a two-branch prompts learning structure to construct the 3D point-box prompts pairs, combining with the bidirectional matching strategy for accurate point and proposal prompts generation. Then, we perform the iterative post-refinement adaptively when cooperated with different vision foundation models. Moreover, we design a affinity-aware merging algorithm to improve the final ensemble masks. PointSeg demonstrates impressive segmentation performance across various datasets, all without training. Specifically, our approach significantly surpasses the state-of-the-art specialist model by 13.4$\%$, 11.3$\%$, and 12$\%$ mAP on ScanNet, ScanNet++, and KITTI-360 datasets, respectively. On top of that, PointSeg can incorporate with various segmentation models and even surpasses the supervised methods.
Abstract:Due to the difficulty and labor-consuming nature of getting highly accurate or matting annotations, there only exists a limited amount of highly accurate labels available to the public. To tackle this challenge, we propose a DiffuMatting which inherits the strong Everything generation ability of diffusion and endows the power of "matting anything". Our DiffuMatting can 1). act as an anything matting factory with high accurate annotations 2). be well-compatible with community LoRAs or various conditional control approaches to achieve the community-friendly art design and controllable generation. Specifically, inspired by green-screen-matting, we aim to teach the diffusion model to paint on a fixed green screen canvas. To this end, a large-scale greenscreen dataset (Green100K) is collected as a training dataset for DiffuMatting. Secondly, a green background control loss is proposed to keep the drawing board as a pure green color to distinguish the foreground and background. To ensure the synthesized object has more edge details, a detailed-enhancement of transition boundary loss is proposed as a guideline to generate objects with more complicated edge structures. Aiming to simultaneously generate the object and its matting annotation, we build a matting head to make a green color removal in the latent space of the VAE decoder. Our DiffuMatting shows several potential applications (e.g., matting-data generator, community-friendly art design and controllable generation). As a matting-data generator, DiffuMatting synthesizes general object and portrait matting sets, effectively reducing the relative MSE error by 15.4% in General Object Matting and 11.4% in Portrait Matting tasks.
Abstract:Most convolutional neural network (CNN) based methods for skin cancer classification obtain their results using only dermatological images. Although good classification results have been shown, more accurate results can be achieved by considering the patient's metadata, which is valuable clinical information for dermatologists. Current methods only use the simple joint fusion structure (FS) and fusion modules (FMs) for the multi-modal classification methods, there still is room to increase the accuracy by exploring more advanced FS and FM. Therefore, in this paper, we design a new fusion method that combines dermatological images (dermoscopy images or clinical images) and patient metadata for skin cancer classification from the perspectives of FS and FM. First, we propose a joint-individual fusion (JIF) structure that learns the shared features of multi-modality data and preserves specific features simultaneously. Second, we introduce a fusion attention (FA) module that enhances the most relevant image and metadata features based on both the self and mutual attention mechanism to support the decision-making pipeline. We compare the proposed JIF-MMFA method with other state-of-the-art fusion methods on three different public datasets. The results show that our JIF-MMFA method improves the classification results for all tested CNN backbones and performs better than the other fusion methods on the three public datasets, demonstrating our method's effectiveness and robustness