Abstract:Talking Head Generation (THG), typically driven by audio, is an important and challenging task with broad application prospects in various fields such as digital humans, film production, and virtual reality. While diffusion model-based THG methods present high quality and stable content generation, they often overlook the intrinsic style which encompasses personalized features such as speaking habits and facial expressions of a video. As consequence, the generated video content lacks diversity and vividness, thus being limited in real life scenarios. To address these issues, we propose a novel framework named Style-Enhanced Vivid Portrait (SVP) which fully leverages style-related information in THG. Specifically, we first introduce the novel probabilistic style prior learning to model the intrinsic style as a Gaussian distribution using facial expressions and audio embedding. The distribution is learned through the 'bespoked' contrastive objective, effectively capturing the dynamic style information in each video. Then we finetune a pretrained Stable Diffusion (SD) model to inject the learned intrinsic style as a controlling signal via cross attention. Experiments show that our model generates diverse, vivid, and high-quality videos with flexible control over intrinsic styles, outperforming existing state-of-the-art methods.
Abstract:Person-generic audio-driven face generation is a challenging task in computer vision. Previous methods have achieved remarkable progress in audio-visual synchronization, but there is still a significant gap between current results and practical applications. The challenges are two-fold: 1) Preserving unique individual traits for achieving high-precision lip synchronization. 2) Generating high-quality facial renderings in real-time performance. In this paper, we propose a novel generalized audio-driven framework RealTalk, which consists of an audio-to-expression transformer and a high-fidelity expression-to-face renderer. In the first component, we consider both identity and intra-personal variation features related to speaking lip movements. By incorporating cross-modal attention on the enriched facial priors, we can effectively align lip movements with audio, thus attaining greater precision in expression prediction. In the second component, we design a lightweight facial identity alignment (FIA) module which includes a lip-shape control structure and a face texture reference structure. This novel design allows us to generate fine details in real-time, without depending on sophisticated and inefficient feature alignment modules. Our experimental results, both quantitative and qualitative, on public datasets demonstrate the clear advantages of our method in terms of lip-speech synchronization and generation quality. Furthermore, our method is efficient and requires fewer computational resources, making it well-suited to meet the needs of practical applications.
Abstract:Due to the difficulty and labor-consuming nature of getting highly accurate or matting annotations, there only exists a limited amount of highly accurate labels available to the public. To tackle this challenge, we propose a DiffuMatting which inherits the strong Everything generation ability of diffusion and endows the power of "matting anything". Our DiffuMatting can 1). act as an anything matting factory with high accurate annotations 2). be well-compatible with community LoRAs or various conditional control approaches to achieve the community-friendly art design and controllable generation. Specifically, inspired by green-screen-matting, we aim to teach the diffusion model to paint on a fixed green screen canvas. To this end, a large-scale greenscreen dataset (Green100K) is collected as a training dataset for DiffuMatting. Secondly, a green background control loss is proposed to keep the drawing board as a pure green color to distinguish the foreground and background. To ensure the synthesized object has more edge details, a detailed-enhancement of transition boundary loss is proposed as a guideline to generate objects with more complicated edge structures. Aiming to simultaneously generate the object and its matting annotation, we build a matting head to make a green color removal in the latent space of the VAE decoder. Our DiffuMatting shows several potential applications (e.g., matting-data generator, community-friendly art design and controllable generation). As a matting-data generator, DiffuMatting synthesizes general object and portrait matting sets, effectively reducing the relative MSE error by 15.4% in General Object Matting and 11.4% in Portrait Matting tasks.
Abstract:3D open-vocabulary scene understanding aims to recognize arbitrary novel categories beyond the base label space. However, existing works not only fail to fully utilize all the available modal information in the 3D domain but also lack sufficient granularity in representing the features of each modality. In this paper, we propose a unified multimodal 3D open-vocabulary scene understanding network, namely UniM-OV3D, which aligns point clouds with image, language and depth. To better integrate global and local features of the point clouds, we design a hierarchical point cloud feature extraction module that learns comprehensive fine-grained feature representations. Further, to facilitate the learning of coarse-to-fine point-semantic representations from captions, we propose the utilization of hierarchical 3D caption pairs, capitalizing on geometric constraints across various viewpoints of 3D scenes. Extensive experimental results demonstrate the effectiveness and superiority of our method in open-vocabulary semantic and instance segmentation, which achieves state-of-the-art performance on both indoor and outdoor benchmarks such as ScanNet, ScanNet200, S3IDS and nuScenes. Code is available at https://github.com/hithqd/UniM-OV3D.
Abstract:This paper reviews the NTIRE 2022 challenge on efficient single image super-resolution with focus on the proposed solutions and results. The task of the challenge was to super-resolve an input image with a magnification factor of $\times$4 based on pairs of low and corresponding high resolution images. The aim was to design a network for single image super-resolution that achieved improvement of efficiency measured according to several metrics including runtime, parameters, FLOPs, activations, and memory consumption while at least maintaining the PSNR of 29.00dB on DIV2K validation set. IMDN is set as the baseline for efficiency measurement. The challenge had 3 tracks including the main track (runtime), sub-track one (model complexity), and sub-track two (overall performance). In the main track, the practical runtime performance of the submissions was evaluated. The rank of the teams were determined directly by the absolute value of the average runtime on the validation set and test set. In sub-track one, the number of parameters and FLOPs were considered. And the individual rankings of the two metrics were summed up to determine a final ranking in this track. In sub-track two, all of the five metrics mentioned in the description of the challenge including runtime, parameter count, FLOPs, activations, and memory consumption were considered. Similar to sub-track one, the rankings of five metrics were summed up to determine a final ranking. The challenge had 303 registered participants, and 43 teams made valid submissions. They gauge the state-of-the-art in efficient single image super-resolution.
Abstract:Deep-learning based Super-Resolution (SR) methods have exhibited promising performance under non-blind setting where blur kernel is known. However, blur kernels of Low-Resolution (LR) images in different practical applications are usually unknown. It may lead to significant performance drop when degradation process of training images deviates from that of real images. In this paper, we propose a novel blind SR framework to super-resolve LR images degraded by arbitrary blur kernel with accurate kernel estimation in frequency domain. To our best knowledge, this is the first deep learning method which conducts blur kernel estimation in frequency domain. Specifically, we first demonstrate that feature representation in frequency domain is more conducive for blur kernel reconstruction than in spatial domain. Next, we present a Spectrum-to-Kernel (S$2$K) network to estimate general blur kernels in diverse forms. We use a Conditional GAN (CGAN) combined with SR-oriented optimization target to learn the end-to-end translation from degraded images' spectra to unknown kernels. Extensive experiments on both synthetic and real-world images demonstrate that our proposed method sufficiently reduces blur kernel estimation error, thus enables the off-the-shelf non-blind SR methods to work under blind setting effectively, and achieves superior performance over state-of-the-art blind SR methods, averagely by 1.39dB, 0.48dB on commom blind SR setting (with Gaussian kernels) for scales $2\times$ and $4\times$, respectively.
Abstract:Recent deep-learning based Super-Resolution (SR) methods have achieved remarkable performance on images with known degradation. However, these methods always fail in real-world scene, since the Low-Resolution (LR) images after the ideal degradation (e.g., bicubic down-sampling) deviate from real source domain. The domain gap between the LR images and the real-world images can be observed clearly on frequency density, which inspires us to explictly narrow the undesired gap caused by incorrect degradation. From this point of view, we design a novel Frequency Consistent Adaptation (FCA) that ensures the frequency domain consistency when applying existing SR methods to the real scene. We estimate degradation kernels from unsupervised images and generate the corresponding LR images. To provide useful gradient information for kernel estimation, we propose Frequency Density Comparator (FDC) by distinguishing the frequency density of images on different scales. Based on the domain-consistent LR-HR pairs, we train easy-implemented Convolutional Neural Network (CNN) SR models. Extensive experiments show that the proposed FCA improves the performance of the SR model under real-world setting achieving state-of-the-art results with high fidelity and plausible perception, thus providing a novel effective framework for real-world SR application.
Abstract:Scene text spotting aims to detect and recognize the entire word or sentence with multiple characters in natural images. It is still challenging because ambiguity often occurs when the spacing between characters is large or the characters are evenly spread in multiple rows and columns, making many visually plausible groupings of the characters (e.g. "BERLIN" is incorrectly detected as "BERL" and "IN" in Fig. 1(c)). Unlike previous works that merely employed visual features for text detection, this work proposes a novel text spotter, named Ambiguity Eliminating Text Spotter (AE TextSpotter), which learns both visual and linguistic features to significantly reduce ambiguity in text detection. The proposed AE TextSpotter has three important benefits. 1) The linguistic representation is learned together with the visual representation in a framework. To our knowledge, it is the first time to improve text detection by using a language model. 2) A carefully designed language module is utilized to reduce the detection confidence of incorrect text lines, making them easily pruned in the detection stage. 3) Extensive experiments show that AE TextSpotter outperforms other state-of-the-art methods by a large margin. For example, we carefully select a validation set of extremely ambiguous samples from the IC19-ReCTS dataset, where our approach surpasses other methods by more than 4%. The image list and evaluation scripts of the validation set have been released at https://github.com/whai362/TDA-ReCTS.
Abstract:This paper reviews the NTIRE 2020 challenge on real world super-resolution. It focuses on the participating methods and final results. The challenge addresses the real world setting, where paired true high and low-resolution images are unavailable. For training, only one set of source input images is therefore provided along with a set of unpaired high-quality target images. In Track 1: Image Processing artifacts, the aim is to super-resolve images with synthetically generated image processing artifacts. This allows for quantitative benchmarking of the approaches \wrt a ground-truth image. In Track 2: Smartphone Images, real low-quality smart phone images have to be super-resolved. In both tracks, the ultimate goal is to achieve the best perceptual quality, evaluated using a human study. This is the second challenge on the subject, following AIM 2019, targeting to advance the state-of-the-art in super-resolution. To measure the performance we use the benchmark protocol from AIM 2019. In total 22 teams competed in the final testing phase, demonstrating new and innovative solutions to the problem.
Abstract:StarCraft II provides an extremely challenging platform for reinforcement learning due to its huge state-space and game length. The previous fastest method requires days to train a full-length game policy in a single commercial machine. In this paper, we introduce the mind-game to facilitate the reinforcement learning, which is an abstract task model. With the mind-game, the policy is firstly trained in the mind-game fastly and is then mapped to the real game for the second phase training. In our experiments, the trained agent can achieve a 100% win-rate on the map Simple64 against the most difficult non-cheating built-in bot (level-7), and the training is 100 times faster than the previous ones under the same computational resource. To test the generalization performance of the agent, a Golden level of StarCraft II Ladder human player has competed with the agent. With restricted strategy, the agent wins the human player by 4 out of 5 games. The mind-game approach might shed some light for further studies of efficient reinforcement learning. The codes are publicly available (https://github.com/mindgameSC2/mind-SC2).