Abstract:Character animation is a transformative field in computer graphics and vision, enabling dynamic and realistic video animations from static images. Despite advancements, maintaining appearance consistency in animations remains a challenge. Our approach addresses this by introducing a training-free framework that ensures the generated video sequence preserves the reference image's subtleties, such as physique and proportions, through a dual alignment strategy. We decouple skeletal and motion priors from pose information, enabling precise control over animation generation. Our method also improves pixel-level alignment for conditional control from the reference character, enhancing the temporal consistency and visual cohesion of animations. Our method significantly enhances the quality of video generation without the need for large datasets or expensive computational resources.
Abstract:Image restoration is a critical task in low-level computer vision, aiming to restore high-quality images from degraded inputs. Various models, such as convolutional neural networks (CNNs), generative adversarial networks (GANs), transformers, and diffusion models (DMs), have been employed to address this problem with significant impact. However, CNNs have limitations in capturing long-range dependencies. DMs require large prior models and computationally intensive denoising steps. Transformers have powerful modeling capabilities but face challenges due to quadratic complexity with input image size. To address these challenges, we propose VmambaIR, which introduces State Space Models (SSMs) with linear complexity into comprehensive image restoration tasks. We utilize a Unet architecture to stack our proposed Omni Selective Scan (OSS) blocks, consisting of an OSS module and an Efficient Feed-Forward Network (EFFN). Our proposed omni selective scan mechanism overcomes the unidirectional modeling limitation of SSMs by efficiently modeling image information flows in all six directions. Furthermore, we conducted a comprehensive evaluation of our VmambaIR across multiple image restoration tasks, including image deraining, single image super-resolution, and real-world image super-resolution. Extensive experimental results demonstrate that our proposed VmambaIR achieves state-of-the-art (SOTA) performance with much fewer computational resources and parameters. Our research highlights the potential of state space models as promising alternatives to the transformer and CNN architectures in serving as foundational frameworks for next-generation low-level visual tasks.
Abstract:Multi-modal Large Language Models (MLLMs) have a significant impact on various tasks, due to their extensive knowledge and powerful perception and generation capabilities. However, it still remains an open research problem on applying MLLMs to low-level vision tasks. In this paper, we present a simple MLLM-based Image Restoration framework to address this gap, namely Multi-modal Large Language Model based Restoration Assistant (LLMRA). We exploit the impressive capabilities of MLLMs to obtain the degradation information for universal image restoration. By employing a pretrained multi-modal large language model and a vision language model, we generate text descriptions and encode them as context embedding with degradation information for the degraded image. Through the proposed Context Enhance Module (CEM) and Degradation Context based Transformer Network (DC-former), we integrate these context embedding into the restoration network, contributing to more accurate and adjustable image restoration. Based on the dialogue with the users, our method leverages image degradation priors from MLLMs, providing low-level attributes descriptions of the input low-quality images and the restored high-quality images simultaneously. Extensive experiments demonstrate the superior performance of our LLMRA in universal image restoration tasks.